Skip to main content
Log in

Nanoparticle-filled ABC Star Triblock Copolymers: A Dissipative Particle Dynamics Study

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The phase behavior of nanoparticle-filled ABC star triblock copolymers was investigated by dissipative particle dynamics simulation. Two typical structures, the three-color lamella and polygonal tiling structures, were selected to demonstrate the effect of filling the nanoparticle. Results showed that the filling effects were obvious on the lamellar structure but not on the tiling structure, where the high concentration of fillers can destroy the lamellar structures. The dynamic processes of nanoparticle filling were investigated for the lamellar and tiling structures, where three stages can be sorted by analyzing the system energies and chain conformations. Moreover, the mechanical properties were evaluated for the lamellar structures by exploring the interface tensions. The findings can help us understand the potential applications of microstructures based on complex block copolymers and nanoparticle mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, Z. J.; Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Discovering ordered phases of block copolymers: new results from a generic Fourier-space approach. Phys. Rev. Lett. 2008, 101, 028301.

    PubMed  Google Scholar 

  2. Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Multiblock polymers: Panacea or Pandora’s box. Science 2012, 336, 434.

    CAS  PubMed  Google Scholar 

  3. Yabu, H.; Higuchi, T.; Jinnai, H. Frustrated phases: polymeric self-assemblies in a 3D confinement. Soft Matter 2014, 10, 2919–2931.

    CAS  PubMed  Google Scholar 

  4. Zhang, Q.; Lin, J. P.; Wang, L. Q.; Xu, Z. W. Theoretical modeling and simulations of self-assembly of copolymers in solution. Prog. Polym. Sci. 2017, 75, 1–30.

    Google Scholar 

  5. Conka, R.; Marien, Y. W.; Sedlacek, O; Hoogenboom, R.; Van Steenberge, P. H. M.; D’Hooge, D. R. A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polym. Chem. 2022, 13, 1559–1575.

    CAS  Google Scholar 

  6. Matsushita, Y. Creation of hierarchically ordered nanophase structures in block polymers having various competing interactions. Macromolecules 2007, 40, 771–776.

    CAS  Google Scholar 

  7. Takano, A.; Wada, S.; Sato, S.; Arak, T.; Hirahara, K.; Kazama, T.; Kawahara, S.; Isono, Y.; Ohno A.; Tanaka, N.; Matsushita, Y. Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography. Macromolecules 2004, 37, 9941–9946.

    CAS  Google Scholar 

  8. Hayashida, K.; Kawashima, W.; Takano, A.; Shinohara, Y.; Amemiya, Y.; Nozue, Y.; Matsushita, Y. Archimedean tiling patterns of ABC star-shaped terpolymers studied by microbeam small-angle X-ray scattering. Macromolecules 2006, 39, 4869–4872.

    CAS  Google Scholar 

  9. Hayashida, K.; Takano, A.; Arai, S.; Shinohara, Y.; Amemiya, Y.; Matsushita, Y. Systematic transitions of tiling patterns formed by ABC star-shaped terpolymers. Macromolecules 2006, 39, 9402–9408.

    CAS  Google Scholar 

  10. Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers. J. Phys. Chem. B 2004, 108, 8434–8438.

    CAS  Google Scholar 

  11. Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. SCFT study of tiling patterns in ABC star terpolymers. Macromolecules 2010, 43, 2981–2989.

    CAS  Google Scholar 

  12. Li, S. B.; Qiu, W. J.; Zhang, L. X.; Liang, H. J. Nanostructures and phase diagrams of ABC star triblock copolymers in pore geometries. J. Chem. Phys. 2012, 136, 124906.

    PubMed  Google Scholar 

  13. Jiang, K.; Zhang, J.; Liang, Q. Self-assembly of asymmetrically interacting ABC star triblock copolymer melts. J. Phys. Chem. B 2015, 119, 14551–14562.

    CAS  PubMed  Google Scholar 

  14. Huang, C. I.; Fang, H. K.; Lin, C. H. Morphological transition behavior of ABC star copolymers by varying the interaction parameters. Phys. Rev. E 2008, 77, 031804.

    Google Scholar 

  15. Moniruzzaman, M.; Winey, K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205.

    CAS  Google Scholar 

  16. Schacher, F. H.; Rupar, P. A.; Manners, I. Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed. 2012, 51, 7898–7921.

    CAS  Google Scholar 

  17. Kao, J.; Thorkelsson, K.; Bai, P.; Rancatore, B. J.; Xu, T. Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem. Soc. Rev. 2013, 42, 2654–2678.

    CAS  PubMed  Google Scholar 

  18. Kumar, S. K.; Jouault, N.; Benicewicz, B.; Neely, T. Nanocomposites with polymer grafted nanoparticles. Macromolecules 2013, 46, 3199–3214.

    CAS  Google Scholar 

  19. Hagita, K.; Morita, H.; Takano, H. Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites. Polymer 2016, 99, 368–375.

    CAS  Google Scholar 

  20. Chai, S. C.; Cao, X.; Xu, F. R.; Zhai, L.; Qian, H. J.; Chen, Q.; Wu, L. X.; Li, H. L. Multiscale self-assembly of mobile-ligand molecular nanoparticles for hierarchical nanocomposites. ACS Nano 2019, 13, 7135–7145.

    CAS  PubMed  Google Scholar 

  21. Liu, M. H.; Li, S.; Fang, Y.; Chen, Z. D.; Alyas, M.; Liu, J.; Zeng, X. F.; Zhang, L. Q. Mechanical and self-healing behavior of matrix-free polymer nanocomposites constructed via grafted graphene nanosheets. Langmuir 2020, 36, 7427–7438.

    CAS  PubMed  Google Scholar 

  22. Zhao, D.; Di Nicola, M.; Khani, M. M.; Jestin, J.; Benicewicz, B. C.; Kumar, S. K. Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites. Soft Matter 2016, 14, 7241–7247.

    Google Scholar 

  23. Chiu, J. J.; Kim, B. J.; Kramer, E. J.; Pine, D. J. Control of nanoparticle location in block copolymers. J. Am. Chem. Soc. 2005, 127, 5036–5037.

    CAS  PubMed  Google Scholar 

  24. Chen, S.; Guo, C.; Hu, G.-H.; Liu, H. Z.; Liang, X. F.; Wang, J.; Ma, J. H. Zheng, L. Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO-PPO-PEO block copolymer micelles. Colloid Polym. Sci. 2007, 285, 1543–1552.

    CAS  Google Scholar 

  25. Deshmukh, R. D.; Buxton, G. A.; Clarke, N.; Composto, R. J. Nanoscale block copolymer templates decorated by nanoparticle arrays. Macromolecules 2007, 40, 6316–6324.

    CAS  Google Scholar 

  26. Chen, H.Y.; Ruckenstein, E. Nanoparticle aggregation in the presence of a block copolymer. J. Chem. Phys. 2009, 131, 244904.

    PubMed  Google Scholar 

  27. Chen, H. Y.; Ruckenstein, E. Structure and particle aggregation in block copolymer-binary nanoparticle composites. Polymer 2010, 51, 5869–5882.

    CAS  Google Scholar 

  28. Lo, C. T.; Lee, B.; Pol, V. G.; Dietz Rago, N. L.; Seifert, S.; Winans, R. E.; Thiyagarajan, P. Effect of molecular properties of block copolymers and nanoparticles on the morphology of self-assembled bulk nanocomposites. Macromolecules 2007, 40, 8302–8310.

    CAS  Google Scholar 

  29. Xiang, W. J.; Zhu, Z. J.; Song, X. Y.; Zhong, C.; Wang, C. J.; Ma, Y. Z. Concentration-induced structural transition of block polymer self-assemblies on a nanoparticle surface: computer simulation. RSC Adv. 2016, 6, 102057–102067.

    CAS  Google Scholar 

  30. Krook, N. M.; Ford, J.; Marechal, M.; Rannou, P.; Meth, J. S.; Murray, C. B.; Composto, R. J. Alignment of nanoplates in lamellar diblock copolymer domains and the effect of particle volume fraction on phase behavior. ACS Macro Lett. 2018, 7, 1400–1407.

    CAS  PubMed  Google Scholar 

  31. Martín-García, B.; Velázquez, M. M. Block copolymer assisted self-assembly of nanoparticles into Langmuir-Blodgett films: effect of polymer concentration. Mater. Chem. Phys. 2013, 141, 324–332.

    Google Scholar 

  32. Coleman, B. R.; Moffitt, M. G. Amphiphilic inorganic nanoparticles with mixed polymer brush layers of variable composition: bridging the paradigms of block copolymer and nanoparticle self-assembly. Chem. Mater. 2018, 30, 2474–2482.

    CAS  Google Scholar 

  33. Huang, J. H.; Fan, Z. X.; Luo, M. B. Simulation study on the structure of rod-coil-rod triblock copolymer and nanoparticle mixture within slit. J. Chem. Phys. 2013, 139, 204904.

    PubMed  Google Scholar 

  34. Zhao, D.; Di Nicola, M.; Khani, M. M.; Jestin, J.; Benicewicz, B.C.; Kumar, S. K. Self-assembly of monodisperse versus bidisperse polymer-grafted nanoparticles. ACS Macro Lett. 2016, 5, 790–795.

    CAS  PubMed  Google Scholar 

  35. Shi, R.; Qian, H. J.; Lu, Z. Y. Computer simulation study on the self-assembly of unimodal and bimodal polymer-grafted nanoparticles in a polymer melt. Phys. Chem. Chem. Phys. 2017, 19, 16524–16532.

    CAS  PubMed  Google Scholar 

  36. Tripathy, M. Self-assembly of polymer-linked nanoparticles and scaling behavior in the assembled phase. Soft Matter 2017, 13, 2475–2482.

    CAS  PubMed  Google Scholar 

  37. Xu, P. X.; Lin, J. P.; Zhang, L. S. Distinct viscoelasticity of nanoparticle-tethering polymers revealed by nonequilibrium molecular dynamics simulations. J. Phys. Chem. C 2017, 121, 28194–28203.

    CAS  Google Scholar 

  38. Diaz, J.; Pinna, M.; Zvelindovsky, A.; Pagonabarraga, I. Coassembly of Janus nanoparticles in block copolymer systems. Soft Matter 2019, 15, 6400–6410.

    CAS  PubMed  Google Scholar 

  39. Yi, C. L.; Yang, Y. Q.; Liu, B.; He, J.; Nie, Z. H. Polymer-guided assembly of inorganic nanoparticles. Chem. Soc. Rev. 2020, 49, 465–508.

    CAS  PubMed  Google Scholar 

  40. Liu, M.B.; Liu, G. R.; Zhou, L. W.; Chang, J. Z. Dissipative particle dynamics (DPD): an overview and recent developments. Arch. Computat. Methods Eng. 2015, 22, 529–556.

    Google Scholar 

  41. Espanol, P.; Warren, P. B. Perspective: dissipative particle dynamics. J. Chem. Phys. 2017, 146, 150901.

    PubMed  Google Scholar 

  42. Ye, T.; Li, Y. A comparative review of smoothed particle hydrodynamics, dissipative particle dynamics and smoothed dissipative particle dynamics. Int. J. Comput. Method 2018, 15, 1850083.

    Google Scholar 

  43. Santo, K. P.; Neimark, A. V. Dissipative particle dynamics simulations in colloid and Interface science: a review. Adv. Colloid Interface Sci. 2021, 298, 102545.

    CAS  PubMed  Google Scholar 

  44. Wang, J. H.; Han, Y. F.; Xu, Z. Y.; Yang, X. Z.; Ramakrishna, S.; Liu, Y. Dissipative particle dynamics simulation: a review on investigating mesoscale properties of polymer systems. Macromol. Mater. Eng. 2021, 306, 2000724.

    CAS  Google Scholar 

  45. Procházka, K.; Limpouchová, Z.; Štěpánek, M.; Šindelka, K.; Lísal, M. DPD modelling of the self- and co-assembly of polymers and polyelectrolytes in aqueous media: impact on polymer science. Polymers 2022, 14, 404.

    PubMed  PubMed Central  Google Scholar 

  46. Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992, 19, 155–160.

    Google Scholar 

  47. Groot, R.D.; Warren, P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435.

    CAS  Google Scholar 

  48. Liu, H. J.; Cavaliere, S.; Jones, D. J.; Rozière, J.; Paddison, S. J. Scaling behavior of nafion with different model parameterizations in dissipative particle dynamics simulations. Macromol. Theory Simul. 2018, 27, 1800003.

    Google Scholar 

  49. Ortiz, V.; Nielsen, S. O.; Discher, D. E.; Klein, M. L.; Lipowsky, R.; Shillcock, J. Dissipative particle dynamics simulations of polymersomes. J. Phys. Chem. B 2005, 109, 17708–17714.

    CAS  PubMed  Google Scholar 

  50. Schiller, U.D.; Krüger, T.; Henrich, O. Mesoscopic modelling and simulation of soft matter. Soft Matter 2018, 14, 9–26.

    CAS  Google Scholar 

  51. Zhang, L. Y.; Becton, M.; Wang, X. Q. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings. J. Phys. Chem. B 2015, 119, 3786–3794.

    CAS  PubMed  Google Scholar 

  52. Chaudhri, A.; Lukes, J. R. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics. Phys. Rev. E 2010, 81, 026707.

    Google Scholar 

  53. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  54. Kong, W. X.; Li, B. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C. Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC miktoarm star terpolymers. J. Am. Chem. Soc. 2009, 131, 8503–8512.

    CAS  PubMed  Google Scholar 

  55. Li, W. H.; Xu, Y. C.; Zhang, G. J.; Qiu, F.; Yang, Y. L.; Shi, A. C. Realspace self-consistent mean-field theory study of ABC star triblock copolymers. J. Chem. Phys. 2010, 133, 064904.

    PubMed  Google Scholar 

  56. Li, S. B.; Jiang, Y.; Chen, J. Z.Y. Morphologies and phase diagrams of ABC star triblock copolymers confined in a spherical cavity. Soft Matter 2013, 9, 4843–4854.

    CAS  Google Scholar 

  57. Pogodin, S.; Bauli, V. A. Equilibrium insertion of nanoscale objects into phospholipid bilayers. Curr. Nanosci. 2011, 7, 721.

    CAS  Google Scholar 

  58. Sun, L. L.; Pan, F.; Li, S. B. Self-assembly of lipid mixtures in solutions: structures, dynamics processes and mechanical properties. Membranes 2022, 12, 730.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chremos, A.; Theodorakis, P. E. Impact of intrinsic backbone chain stiffness on the morphologies of bottle-brush diblock copolymers. Polymer 2016, 97, 191–195.

    CAS  Google Scholar 

  60. Singh, A.; Chakraborti, A.; Singh, A. Role of a polymeric component in the phase separation of ternary fluid mixtures: a dissipative particle dynamics study. Soft Matter 2018, 14, 4317–4326.

    CAS  PubMed  Google Scholar 

  61. Lin, S. L.; Xu, M. Y.; Yang, Z. R. Dissipative particle dynamics study on the mesostructures of n-octadecane/water emulsion with alternating styrene–maleic acidcopolymers as emulsifier. Soft Matter 2012, 8, 375–384.

    CAS  Google Scholar 

  62. Ding, H. M.; Ma, Y. Q. Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery. Small 2015, 11, 1055–1071.

    CAS  PubMed  Google Scholar 

  63. Xia, P. P.; Shan, Y.; He, L. L.; Ji, Y. Y.; Wang, X. H.; Li, S. B. Multinanoparticle translocations in phospholipid membranes: translocation modes and dynamic processes. Chin. J. Chem. Phys. 2020, 33, 468–476.

    CAS  Google Scholar 

  64. Kravchenko, V. S.; Potemkin, I. I. Self-assembly of rarely polymergrafted nanoparticles in dilute solutions and on a surface: from non-spherical vesicles to graphene-like sheets. Polymer 2018, 142, 23–32.

    CAS  Google Scholar 

  65. Cho, H. K.; Ch, I. W.; Lee, J. M.; Kim, J. H. Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer. Korean J. Chem. Eng. 2010, 27, 731–740.

    CAS  Google Scholar 

  66. Chen, H.; Ruckenstein, E. Aggregation of nanoparticles in a block copolymer bilayer. J. Colloid Interface Sci. 2011, 363, 573–578.

    CAS  PubMed  Google Scholar 

  67. Yang, J. Y.; Hu, Y.; Wang, R.; Xie, D. Q. Nanoparticle encapsulation in vesicles formed by amphiphilic diblock copolymers. Soft Matter 2017, 13, 7840–7847.

    CAS  PubMed  Google Scholar 

  68. Abu-Nada, E.; Pop, I.; Mahian, O. A dissipative particle dynamics two-component nanofluid heat transfer model: application to natural convection. Int. J. Heat and Mass Transfer 2019, 133, 1086–1098.

    CAS  Google Scholar 

  69. Jia, L.; Wang, R.; Fan, Y. N. Encapsulation and release of drug nanoparticles in functional polymeric vesicles. Soft Matter 2020, 16, 3088–3095.

    PubMed  Google Scholar 

  70. Nam, C.; Lee, W. B.; Kim, Y. Self-assembly of rod-coil diblock copolymer-nanoparticle composites in thin films: dissipative particle dynamics. Soft Matter 2021, 17, 2384–2391.

    CAS  PubMed  Google Scholar 

  71. Li, Z.; Wang, J. F.; Wei, Q.; Qi, Z. Q.; Zhou, L. X.; Li, J. W. In silico insights into the receptor-mediated endocytosis of virus-like nanoparticles. Chem. Phys. Lett. 2022, 790, 139360.

    CAS  Google Scholar 

  72. Song, W. Y.; Lu, H.; He, J. W.; Zhu, Z. J.; He, S. Y.; Liu, D. H.; Liu, H.; Wang, Y. Dynamics and morphology of self-assembly behavior of polymer-grafted nanoparticles: a dissipative particle dynamics simulation study. Polym. Int. 2022, 71, 1330–1339.

    CAS  Google Scholar 

  73. Maiti, A.; McGrother, S. Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension. J. Chem. Phys. 2004, 120, 1594–1601.

    CAS  PubMed  Google Scholar 

  74. Qiang, X. W.; Wang, X. H.; Ji, Y. Y.; Li, S. B.; He, L. L. Liquid-crystal self-assembly of lipid membranes on solutions: a dissipative particle dynamic simulation study. Polymer 2017, 115, 1–11.

    CAS  Google Scholar 

  75. Chen, Y. Y.; Wang, Z. G.; Ji, Y. Y.; He, L. L.; Wang, X. H.; Li, S. B. Asymmetric lipid membranes under shear flows: a dissipative particle dynamics study. Membranes 2021, 11, 655.

    PubMed  PubMed Central  Google Scholar 

  76. Velázquez, M. E.; Gama-Goicochea, A.; González-Melchor, M.; Neria, M.; Alejandre, J. Finite-size effects in dissipative particle dynamics simulations. J. Chem. Phys. 2006, 124, 084104.

    PubMed  Google Scholar 

  77. Matsen, M. W.; Thompson, R. B. Particle distributions in a block copolymer nanocomposite. Macromolecules 2008, 41, 1853–1860.

    CAS  Google Scholar 

  78. Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Predicting the mesophases of copolymer-nanoparticle composites. Science 2001, 292, 2469.

    CAS  PubMed  Google Scholar 

  79. Kang, H.; Detcheverry, F. A.; Mangham, A. N.; Stoykovich, M. P.; Daoulas, K. C.; Hamers, R. J.; Müller, M.; de Pablo, J. J.; Nealey, P. F. Hierarchical assembly of nanoparticle superstructures from block copolymer-nanoparticle composites. Phys. Rev. Lett. 2008, 100, 148303.

    PubMed  Google Scholar 

  80. Lo, C. T.; Lee, B.; Dietz Rago, N. L.; Winans, R. E.; Thiyagarajan, P. Strategy for better ordering in diblock copolymer based nanocomposites. Macromol. Rapid Commun. 2007, 28, 1607–1612.

    CAS  Google Scholar 

  81. He, L. L.; Zhang, L. X.; Liang, H. J. The effects of nanoparticles on the lamellar phase separation of diblock copolymers. J. Phys. Chem. B 2008, 112, 4194–4203.

    CAS  PubMed  Google Scholar 

  82. Tang, Q. Y.; Ma, Y. Q. Self-assembly of rod-shaped particles in diblock-copolymer templates. J. Phys. Chem. B 2009, 113, 10117–10120.

    CAS  PubMed  Google Scholar 

  83. Huang, W.; Zaburdaev, V. The shape of pinned forced polymer loops. Soft Matter 2019, 15, 1785–1792.

    CAS  PubMed  Google Scholar 

  84. Haller, G. Dynamic rotation and stretch tensors from a dynamic polar decomposition. J. Mech. Phys. Solids 2016, 86, 70–93.

    Google Scholar 

  85. Shan, Y.; Ji, Y. Y.; Wang, X. H.; He, L. L.; Li, S. B. Predicting asymmetric phospholipid microstructures in solutions. RSC Adv. 2020, 10, 24521–24532.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zifferer, G.; Preusser, W. Monte Carlo simulation studies of the size and shape of ring polymers. Macromol. Theory Simul. 2001, 10, 397–407.

    CAS  Google Scholar 

  87. Diehi, H.W.; Eisenriegler, E. Universal shape ratios for open and closed random walks: exact results for all d. J. Phys. A 1989, 42, L87–L91.

    Google Scholar 

  88. Li, S. B.; Zhang, L. X. Conformational structures and thermodynamic properties of compact polymer chains confined between two parallel plane boundaries. J. Polym. Sci. B 2006, 44, 2888–2901.

    CAS  Google Scholar 

  89. Shan, Y.; Qiang, X. W.; Ye, J. Z.; Wang, X. H.; He, L. L.; Li, S. B. Shear-induced microstructures and dynamics processes of phospholipid cylinders in solutions. Sci. Rep. 2019, 9, 15393.

    PubMed  PubMed Central  Google Scholar 

  90. Villers, D.; Flatten, J. K. Temperature dependence of the interfacial tension between water and long-chain alcohols. J. Phys. Chem. 1988, 92, 4023–4024.

    CAS  Google Scholar 

  91. Petelska, A. D. Interfacial tension of bilayer lipid membranes. Cent. Eur. J. Chem. 2012, 10, 16–26.

    CAS  Google Scholar 

  92. Irving, J. H.; Kirkwood, J. G. The Statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 1950, 18, 817–829.

    CAS  Google Scholar 

  93. Yang, J. Z. J.; Wu, X. J.; Li, X. T. A generalized Irving-Kirkwood formula for the calculation of stress in molecular dynamics models. J. Chem. Phys. 2012, 137, 134104.

    PubMed  Google Scholar 

  94. Smith, E. R.; Heyes, D. M.; Dini, D. Towards the Irving-Kirkwood limit of the mechanical stress tensor. J. Chem. Phys. 2017, 146, 224109.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamamoto, T.; Safran, S. A. Line tension between domains in multicomponent membranes is sensitive to degree of unsaturation of hybrid lipids. Soft Matter 2011, 7, 7021–7033.

    CAS  Google Scholar 

  96. Maniadis, P.; Lookman, T.; Kober, E. M.; Rasmussen, K. Ø. Stress distributions in diblock copolymers. Phys. Rev. Lett. 2007, 99, 048302.

    CAS  PubMed  Google Scholar 

  97. Detcheverry, F. A.; Pike, D. Q.; Nealey, P. F.; Müller, M.; de Pablo, J. J. Monte Carlo simulation of coarse grain polymeric systems. Phys. Rev. Lett. 2009, 102, 197801.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 11875205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Hong Wang.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Zhang, YT. & Wang, XH. Nanoparticle-filled ABC Star Triblock Copolymers: A Dissipative Particle Dynamics Study. Chin J Polym Sci 41, 1462–1476 (2023). https://doi.org/10.1007/s10118-023-3021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3021-4

Keywords

Navigation