Skip to main content
Log in

Antibacterial Sutures Coated with Smooth Chitosan Layer by Gradient Deposition

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Owing to the significant importance in clinics, antibacterial activity is thought as one indispensable feature of the next generation of absorbable sutures. It is challenging but imperative to arm the existing absorbable sutures with antibacterial functions. The present study describes a “gradient deposition” technique to coat a continuous and smooth layer of chitosan on the surface of absorbable sutures. Specifically, chitosan solution is arranged to undergo gradient pH decline step by step while during each pH interval, the solution is allowed to stand for a predetermined period of time in order to control gradual chitosan deposition. Chitosan nanoparticles are found to be first generated on suture surface and finally developed into a smooth chitosan layer as the antibacterial surface. In vitro and in vivo results demonstrated that coating chitosan on sutures by our technique could relieve wound inflammation, stimulate collagen deposition, regenerate blood vessels, and assist tissue repairing, consequently leading to a significant enhancement of wound healing effect. This technique is highlighted with low cost, extreme convenience and excellent safety without organic solvents. Furthermore, the “gradient deposition” technique would not affect the fundamental properties of matrix and thus hold promises as a universal way for superficial antibacterial modification towards almost all the surgical implanted materials, including but not limited to absorbable sutures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dennis, C.; Sethu, S.; Nayak, S.; Mohan, L.; Morsi, Y.; Manivasagam, G. Suture materials—current and emerging trends. J. Biomed. Mater. Res. A 2016, 104, 1544–1559.

    Article  CAS  PubMed  Google Scholar 

  2. de la Harpe, K. M.; Kondiah, P. P. D.; Marimuthu, T.; Choonara, Y. E. Advances in carbohydrate-based polymers for the design of suture materials: a review. Carbohydr. Polym. 2021, 261, 117860.

    Article  CAS  PubMed  Google Scholar 

  3. Pillai, C. K. S.; Sharma, C. P. Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J. Biomater. Appl. 2010, 25, 291–366.

    Article  CAS  PubMed  Google Scholar 

  4. Ashraf, I.; Butt, E.; Veitch, D.; Wernham, A. Dermatological surgery: an update on suture materials and techniques. Part 1. Clin. Exp. Dermatol. 2021, 46, 1400–1410.

    Article  CAS  PubMed  Google Scholar 

  5. Abhari, R. E.; Martins, J. A.; Morris, H. L.; Mouthuy, P. A.; Carr, A. Synthetic sutures: clinical evaluation and future developments. J. Biomater. Appl. 2017, 32, 410–421.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor, J. S.; Marten, C. A.; Potts, K. A.; Cloutier, L. M.; Cain, K. E.; Fenton, S. L.; Tatum, T. N.; James, D. A.; Myers, K. N.; Hubbs, C. A.; Burzawa, J. K.; Vachhani, S.; Nick, A. M.; Meyer, L. A.; Graviss, L. S.; Ware, K. M.; Park, A. K.; Aloia, T. A.; Bodurka, D. C.; Levenback, C. F.; Schmeler, K. M. What is the real rate of surgical site infection? J. Oncol. Pract. 2016, 12, e878–e883.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wagner, J. C.; Wetz, A.; Wiegering, A.; Lock, J. F.; Löb, S.; Germer, C. T.; Klein, I. Successful surgical closure of infected abdominal wounds following preconditioning with negative pressure wound therapy. Langenbeck. Arch. Surg. 2021, 406, 2479–2487.

    Article  Google Scholar 

  8. Renko, M.; Paalanne, N. Tapiainen, T.; Hinkkainen, M.; Pokka, T.; Kinnula, S.; Sinikumpu, J. J.; Uhari, M.; Serlo, W. Triclosan-containing sutures versus ordinary sutures for reducing surgical site infections in children: a double-blind, randomised controlled trial. Lancet. Infect. Dis. 2017, 17, 50–57.

    Article  CAS  PubMed  Google Scholar 

  9. Tummalapalli, M.; Anjum, S.; Kumari, S.; Gupta, B. Antimicrobial surgical sutures: recent developments and strategies. Polym. Rev. 2016, 56, 607–630.

    Article  CAS  Google Scholar 

  10. Fields, A. C.; Pradarelli, J. C.; Itani, K. M. F. Preventing surgical site infections: looking beyond the current guidelines. JAMA 2020, 323, 1087–1088.

    Article  PubMed  Google Scholar 

  11. Wu, X.; Kubilay, N. Z.; Ren, J.; Allegranzi, B.; Bischoff, P.; Zayed, B.; Pittet, D.; Li, J. Antimicrobial-coated sutures to decrease surgical site infections: a systematic review and meta-analysis. Eur. J. Clin. Microbiol. 2017, 36, 19–32.

    Article  CAS  Google Scholar 

  12. Deng, X.; Qasim, M.; Ali, A. Engineering and polymeric composition of drug-eluting suture: a review. J. Biomed. Mater. Res. A 2021, 109, 2065–2081.

    Article  CAS  PubMed  Google Scholar 

  13. Alshomer, F.; Madhavan, A.; Pathan, O.; Song, W. Bioactive sutures: a review of advances in surgical suture functionalisation. Curr. Med. Chem. 2017, 24, 215–223.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, J.; Yoo, J.; Kim, J.; Jang, Y.; Shin, K.; Ha, E.; Ryu, S.; Kim, B. G.; Wooh, S.; Char, K. Development of multimodal antibacterial surfaces using porous amine-reactive films incorporating lubricant and silver nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 6550–6560.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X.; Liu, P.; Wu, Q.; Zheng, Z.; Xie, M.; Chen, G.; Yu, J.; Wang, X.; Li, G.; Kaplan, D. Sustainable antibacterial and antiinflammatory silk suture with surface modification of combined-therapy drugs for surgical site infection. ACS Appl. Mater. Interfaces 2022, 14, 11177–11191.

    Article  CAS  PubMed  Google Scholar 

  16. Serrano, C.; García-Fernández, L.; Fernández-Blázquez, J. P.; Barbeck, M.; Ghanaati, S.; Unger, R.; Kirkpatrick, J.; Arzt, E.; Funk, L.; Turón, P.; del Campo, A. Nanostructured medical sutures with antibacterial properties. Biomaterials 2015, 52, 291–300.

    Article  CAS  PubMed  Google Scholar 

  17. Benesch, J.; Tengvall, P. Blood protein adsorption onto chitosan. Biomaterials 2002, 23, 2561–2568.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, U. J.; Lee, Y. R.; Kang, T. H.; Choi, J. W.; Kimura, S.; Wada, M. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr. Polym. 2017, 163, 34–42.

    Article  CAS  PubMed  Google Scholar 

  19. Shi, X. W.; Li, X. X.; Du, Y. M. Recent progress of chitin-based materials. Acta Polymerica Sinica (in Chinese) 2011, 1–17.

  20. Xia, G. X.; Wu, Y. M.; Bi, Y. F.; Chen, K.; Zhang, W. W.; Liu, S. Q.; Zhang, W. J.; Liu, R. H. Antimicrobial properties and application of polysaccharides and their derivatives. Chinese J. Polym. Sci. 2021, 39, 133–146.

    Article  CAS  Google Scholar 

  21. Li, J.; Wu, Y.; Zhao, L. Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr. Polym. 2016, 148, 200–205.

    Article  CAS  PubMed  Google Scholar 

  22. Benchamas, G.; Huang, G.; Huang, S.; Huang, H. Preparation and biological activities of chitosan oligosaccharides. Trends Food. Sci. Tech. 2021, 107, 38–44.

    Article  CAS  Google Scholar 

  23. Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019, 263, 131–194.

    Article  CAS  PubMed  Google Scholar 

  24. Ghasemzadeh, H.; Sheikhahmadi, M.; Nasrollah, F. Full polysaccharide crosslinked-chitosan and silver nano composites, for use as an antibacterial membrane. Chinese J. Polym. Sci. 2016, 34, 949–964.

    Article  CAS  Google Scholar 

  25. Avcu, E.; Baştan, F. E.; Abdullah, H. Z.; Rehman, M. A. U.; Avcu, Y. Y.; Boccaccini, A. R. Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog. Mater. Sci. 2019, 103, 69–108.

    Article  CAS  Google Scholar 

  26. Boon-in, S.; Theerasilp, M.; Crespy, D. Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. J. Colloid Interface Sci. 2022, 622, 75–86.

    Article  CAS  PubMed  Google Scholar 

  27. Abdelkader, A.; Fathi, H. A.; Hamad, M. A.; Elsabahy, M. Nanomedicine: a new paradigm to overcome drug incompatibilities. J. Pharm. Pharmacol. 2020, 72, 1289–1305.

    Article  CAS  PubMed  Google Scholar 

  28. Qin, B.; Fei, C.; Bridges Andrew, A.; Mashruwala Ameya, A.; Stone Howard, A.; Wingreen Ned, S.; Bassler Bonnie, L. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 2020, 369, 71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ciofu, O.; Moser, C.; Jensen, P. O.; Hoiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022, DOI: https://doi.org/10.1038/s41579-022-00682-4

  30. Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108.

    Article  CAS  PubMed  Google Scholar 

  31. Mahesh, L.; Kumar, V. R.; Jain, A.; Shukla, S.; Aragoneses, J. M.; Martínez González, J. M.; Fernández-Domínguez, M.; Calvo-Guirado, J. L. Bacterial adherence around sutures of different material at grafted site: a microbiological analysis. Materials 2019, 12, 2848.

    Article  CAS  PubMed Central  Google Scholar 

  32. Katz, S.; Izhar, M.; Mirelman, D. Bacterial adherence to surgical sutures: a possible factor in suture induced infection. Ann. Surg. 1981, 194, 35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ali-Mucheru, M. N.; Seville, M. T.; Miller, V.; Sampathkumar, P.; Etzioni, D. A. Postoperative surgical site infections: understanding the discordance between surveillance systems. Ann. Surg. 2020, 271, 94–99.

    Article  PubMed  Google Scholar 

  34. Wills, B. W.; Smith, W. R.; Arguello, A. M.; McGwin, G.; Ghanem, E. S.; Ponce, B. A. Association of surgical jacket and bouffant use with surgical site infection risk. JAMA Surg. 2020, 155, 323–328.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alverdy, J. C.; Hyman, N.; Gilbert, J. Re-examining causes of surgical site infections following elective surgery in the era of asepsis. Lancet. Infect. Dis. 2020, 20, e38–e43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tomihata, K.; Suzuki, M.; Oka, T.; Ikada, Y. A new resorbable monofilament suture. Polym. Degrad. Stab. 1998, 59, 13–18.

    Article  CAS  Google Scholar 

  37. Hu, W.; Huang, Z. M. Biocompatibility of braided poly(L-lactic acid) nanofiber wires applied as tissue sutures. Polym. Int. 2010, 59, 92–99.

    Article  CAS  Google Scholar 

  38. Baygar, T.; Sarac, N.; Ugur, A.; Karaca, I. R. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg. Chem. 2019, 86, 254–258.

    Article  CAS  PubMed  Google Scholar 

  39. Korntner, S.; Lehner, C.; Gehwolf, R.; Wagner, A.; Grütz, M.; Kunkel, N.; Tempfer, H.; Traweger, A. Limiting angiogenesis to modulate scar formation. Adv. Drug Deliver. Rev. 2019, 146, 170–189.

    Article  CAS  Google Scholar 

  40. Konieczny, P.; Naik, S. Healing without scarring. Science 2021, 372, 346–347.

    Article  CAS  PubMed  Google Scholar 

  41. Willenborg, S.; Eming Sabine, A. Cellular networks in wound healing. Science 2018, 362, 891–892.

    Article  CAS  PubMed  Google Scholar 

  42. Rodrigues, M.; Kosaric, N.; Bonham, C. A.; Gurtner, G. C. Wound healing: a cellular perspective. Physiol. Rev. 2018, 99, 665–706.

    Article  PubMed Central  CAS  Google Scholar 

  43. Ip, W. K. E.; Hoshi, N.; Shouval Dror, S.; Snapper, S.; Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 2017, 356, 513–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sato, Y.; Ohshima, T.; Kondo, T. Regulatory role of endogenous Interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem. Biophys. Res. Commun. 1999, 265, 194–199.

    Article  CAS  PubMed  Google Scholar 

  45. Sun, W.; Wu, Y.; Zheng, M.; Yang, Y.; Liu, Y.; Wu, C.; Zhou, Y.; Zhang, Y.; Chen, L.; Li, H. Discovery of an orally active small-molecule tumor necrosis factor-α inhibitor. J. Med. Chem. 2020, 63, 8146–8156.

    Article  CAS  PubMed  Google Scholar 

  46. Yu, Q. J.; Fen, Z. C.; Huang, L. P.; He, J. W.; Zhou, Z. L.; Liu, F. Ellagic acid (EA), a tannin was isolated from Eucalyptus citriodora leaves and its anti-inflammatory activity. Med. Chem. Res. 2021, 30, 2277–2288.

    Article  CAS  Google Scholar 

  47. Johnson, B. Z.; Stevenson, A. W.; Prêle, C. M.; Fear, M. W.; Wood, F. M. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 2020, 8, 101–119.

    Article  CAS  PubMed Central  Google Scholar 

  48. Leknes, K. N.; Selvig, K. A.; Boe, O. E.; Wikesjö, U. M. E. Tissue reactions to sutures in the presence and absence of anti-infective therapy. J. Clin. Periodontol. 2005, 32, 130–138.

    Article  PubMed  Google Scholar 

  49. Masini, B. D.; Stinner, D. J.; Waterman, S. M.; Wenke, J. C. Bacterial adherence to suture materials. J. Surg. Educ. 2011, 68, 101–104.

    Article  PubMed  Google Scholar 

  50. Markel, D. C.; Bergum, C.; Wu, B.; BouAkl, T.; Ren, W. Does suture type influence bacterial retention and biofilm formation after irrigation in a mouse model?. Clin. Orthop. Relat. Res. 2019, 477, 116–126.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973164, 52131302, 22135005 and 51833007), National Key Research and Development Program of China (2019YFA0905603) and Fundamental Research Funds for the Central Universities (No. 2042021kf0037). All of the animal experiments were conducted under protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the Animal Experiment Center of Wuhan University (Wuhan, P. R. China)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Feng or Xian-Zheng Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information of

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YG., Li, CX., Zhang, Y. et al. Antibacterial Sutures Coated with Smooth Chitosan Layer by Gradient Deposition. Chin J Polym Sci 40, 1050–1061 (2022). https://doi.org/10.1007/s10118-022-2770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2770-9

Keywords

Navigation