Skip to main content
Log in

Stress-induced Solid-Solid Crystal Transition in Trans-1,4-polyisoprene

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The polymorphic transition of trans-1,4-polyisoprene (TPI) during stretching was investigated by in situ wide-angle X-ray diffraction and Fourier transform infrared spectroscopy. The influences of the initial structure, stretching temperature, and strain rate on the contents of different crystal modifications (α, β) were explored. The results confirm that the α-β transition occurs during stretching of TPI that only contains α crystal (α-TPI). When the stress is relaxed, the β crystal formed during stretching remains, which indicates that the transition is irreversible. On the other hand, stretching of TPI that only contains β crystal (β-TPI) results in orientated β crystal. No β-α transition occurs during stretching. The different structures of stretched α-TPI and β-TPI exclude the previously proposed “melting-recrystallization mechanism”. The α-β transition depends significantly on temperature and strain rate, indicating the transition is governed both by thermodynamics and kinetics. Our results support a solid-solid transition mechanism rather than a melting-recrystallization mechanism. The irreversible nature of the transition is attributed to the metastability of the β phase in the unstretched state. Different from the “β phases” that appear in polymers with stress-induced reversible transitions, e.g. poly(butylene terephthalate) and poly(butylene succinate), the stability of β phase in TPI is high that can be long-lived. The strain rate dependence of α-β transition hinders the determination of critical stress for the transition. It further indicates that the local stress within the sample is more heterogeneous at higher strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strobl, G. R. The physics of polymers. Springer: Berlin, 2007.

    Google Scholar 

  2. Hu, W. Polymer physics: a molecular approach. Springer-Verlag: Wien, 2013.

    Book  Google Scholar 

  3. Men, Y. Critical strains determine the tensile deformation mechanism in semicrystalline polymers. Macromolecules 2020, 53, 9155–9157.

    Article  CAS  Google Scholar 

  4. Peterlin, A. Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 1971, 6, 490–508.

    Article  CAS  Google Scholar 

  5. Bowden, P. B.; Young, R. J. Deformation mechanisms in crystalline polymers. J. Mater. Sci. 1974, 9, 2034–2051.

    Article  CAS  Google Scholar 

  6. Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature 1978, 272, 226–229.

    Article  CAS  Google Scholar 

  7. Wu, W.; Wignall, G. D.; Mandelkern, L. A SANS study of the plastic deformation mechanism in polyethylene. Polymer 1992, 33, 4137–4140.

    Article  CAS  Google Scholar 

  8. Li, R.; Yang, G. X.; Qin, Y. N.; Liu, L.; Jiang, Z. Y. Molecular mobility in the amorphous phase determines the critical strain of fibrillation in the tensile stretching of polyethylene. Chinese J. Polym. Sci. 2020, 38, 740–747.

    Article  CAS  Google Scholar 

  9. Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32, 4390–4403.

    Article  CAS  Google Scholar 

  10. Men, Y.; Rieger, J.; Strobl, G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys. Rev. Lett. 2003, 91, 095502.

    Article  PubMed  Google Scholar 

  11. Liu, G.; Zhang, X.; Wang, D. Stress induced reversible crystal transition in polymers. Polym. Int. 2015, 64, 951–956.

    Article  CAS  Google Scholar 

  12. Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules 1976, 9, 266–273.

    Article  CAS  Google Scholar 

  13. Saraf, R. F.; Porter, R. S. Deformation of semicrystalline polymers via crystal-crystal phase transition. J. Polym. Sci., Part B: Polym. Phys. 1988, 26, 1049–1057.

    Article  CAS  Google Scholar 

  14. Ma, Z.; Shao, C.; Wang, X.; Zhao, B.; Li, X.; An, H.; Yan, T.; Li, Z.; Li, L. Critical stress for drawing-induced α crystal-mosophese transition in isotactic polypropylene. Polymer 2009, 50, 2706–2715.

    Article  CAS  Google Scholar 

  15. Auriemma, F.; Ruiz de Ballesteros, O.; De Rosa, C. Origin of the elastic behavior of syndiotactic polypropylene. Macromolecules 2001, 34, 4485–4491.

    Article  CAS  Google Scholar 

  16. Auriemma, F.; De Rosa, C. Time-resolved study of the martensitic phase transition in syndiotactic polypropylene. Macromolecules 2003, 36, 9396–9410.

    Article  CAS  Google Scholar 

  17. Hall, I. H.; Pass, M. G. Chain conformation of poly(tetramethylene terephthalate) and its change with strain. Polymer 1976, 17, 807–816.

    Article  CAS  Google Scholar 

  18. Tashiro, K.; Nakai, Y.; Kobayashi, M.; Tadokoro, H. Solid-state transition of poly(butylene terephthalate) induced by mechanical deformation. Macromolecules 1980, 13, 137–145.

    Article  CAS  Google Scholar 

  19. Ichikawa, Y.; Suzuki, J.; Washiyama, J.; Moteki, Y.; Noguchi, K.; Okuyama, K. Strain-induced crystal modification in poly(tetramethylene succinate). Polymer 1994, 35, 3338–3339.

    Article  CAS  Google Scholar 

  20. Liu, G.; Zheng, L.; Zhang, X.; Li, C.; Jiang, S.; Wang, D. Reversible lamellar thickening induced by crystal transition in poly(butylene succinate). Macromolecules 2012, 45, 5487–5493.

    Article  CAS  Google Scholar 

  21. Liu, G.; Zheng, L.; Zhang, X.; Li, C.; Wang, D. Critical stress for crystal transition in poly(butylene succinate)-based crystalline-amorphous multiblock copolymers. Macromolecules 2014, 47, 7533–7539.

    Article  CAS  Google Scholar 

  22. Ichikawa, Y.; Washiyama, J.; Moteki, Y.; Noguchi, K.; Okuyama, K. Crystal modification in poly(ethylene succinate). Polym. J. 1995, 27, 1264–1266.

    Article  CAS  Google Scholar 

  23. Ichikawa, Y.; Noguchi, K.; Okuyama, K.; Washiyama, J. Crystal transition mechanisms in poly(ethylene succinate). Polymer 2001, 42, 3703–3708.

    Article  CAS  Google Scholar 

  24. Liu, G.; Zheng, L.; Zhang, X.; Li, C.; Wang, D. Stress induced lamellar thickening in poly(ethylene succinate). Polymer 2013, 54, 6860–6866.

    Article  CAS  Google Scholar 

  25. Cai, Z. W.; Zhang, Y.; Li, J. Q.; Xue, F. F.; Shang, Y. R.; He, X. H.; Feng, J. C.; Wu, Z. H.; Jiang, S. C. Real time synchrotron SAXS and WAXS investigations on temperature related deformation and transitions of β-iPP with uniaxial stretching. Polymer 2012, 53, 1593–1601.

    Article  CAS  Google Scholar 

  26. Zhang, C.; Liu, G.; Song, Y.; Zhao, Y.; Wang, D. Structural evolution of β-iPP during uniaxial stretching studied by in-situ WAXS and SAXS. Polymer 2014, 55, 6915–6923.

    Article  CAS  Google Scholar 

  27. Zhang, C.; Liu, G.; Jiang, Q.; Yang, J.; Zhao, Y.; Wang, D. A WAXS/SAXS study on the deformation behavior of β-nucleated propylene-ethylene random copolymer subjected to uniaxial stretching. RSC Adv. 2015, 5, 44610–44617.

    Article  CAS  Google Scholar 

  28. Liu, Y.; Cui, K.; Tian, N.; Zhou, W.; Meng, L.; Li, L.; Ma, Z.; Wang, X. Stretch-induced crystal—crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle X-ray scattering study. Macromolecules 2012, 45, 2764–2772.

    Article  CAS  Google Scholar 

  29. Bunn, C. W.; Bragg, W. H. Molecular structure and rubber-like elasticity I. The crystal structures of β gutta-percha, rubber and polychloroprene. Proc. Roy. Soc. London. Series A. Math. Phys. Sci. 1942, 180, 40–66.

    CAS  Google Scholar 

  30. Goodman, A.; Schilder, H.; Aldrich, W. The thermomechanical properties of gutta-percha: II. The history and molecular chemistry of gutta-percha. Or. Surg. Or. Med., Or. Pa. 1974, 37, 954–961.

    Article  CAS  Google Scholar 

  31. Mandelkern, L.; Quinn, F. A.; Roberts, D. E. Thermodynamics of crystallization in high polymers: gutta percha. J. Am. Chem. Soc. 1956, 78, 926–932.

    Article  CAS  Google Scholar 

  32. Sarina; Zhang, J.; Zhang, L. Dynamic mechanical properties of Eucommia ulmoides gum with different degree of cross-linking. Polym. Bull. 2012, 68, 2021–2032.

    Article  CAS  Google Scholar 

  33. Zhang, J.; Zhang, T.; Dong, M.; Liu, G.; Dong, Y. Study on degrees of mesomorphic zone of polymer II. Determination of the degree of mesomorphic zone of eucommia ulmoides gum and natural rubber by dynamic mechanical thermal analysis and differential scanning calorimetry. Polym. Test. 2017, 63, 550–557.

    Article  CAS  Google Scholar 

  34. Liu, G.; Zhang, X.; Zhang, T.; Zhang, J.; Zhang, P.; Wang, W. Determination of the content of Eucommia ulmoides gum by variable temperature Fourier transform infrared spectrum. Polym. Test. 2017, 63, 582–586.

    Article  CAS  Google Scholar 

  35. Lovering, E. G.; Wooden, D. C. Transitions in trans-1,4-polyisoprene. J. Polym. Sci., Part B: Polym. Phys. 1969, 7, 1639–1649.

    CAS  Google Scholar 

  36. Flanagan, R. D.; Rijke, A. M. Polymorphism in polymers. I. The equilibrium melting temperature of two crystalline modifications of trans-1,4-polyisoprene. J. Polym. Sci., Part B: Polym. Phys. 1972, 10, 1207–1219.

    CAS  Google Scholar 

  37. Ratri, P. J.; Tashiro, K.; Iguchi, M. Experimentally- and theoretically-evaluated ultimate 3-dimensional elastic constants of trans-1,4-polyisoprene α and β crystalline forms on the basis of the newly-refined crystal structure information. Polymer 2012, 53, 3548–3558.

    Article  CAS  Google Scholar 

  38. Lu, J.; Yang, H.; Ji, Y.; Li, X.; Lv, Y.; Su, F.; Li, L. Strong memory effect of metastable β form trans-1,4-polyisoprene above equilibrium melting temperature. Macromol. Chem. Phys. 2017, 218, 1700235.

    Article  Google Scholar 

  39. Martuscelli, E.; Mancarella, C. Deformation of trans-1,4-polyisoprene spherulite: small angle X-ray diffraction, thermal differential analysis and density studies. Polymer 1973, 14, 71–77.

    Article  CAS  Google Scholar 

  40. Ratri, P. J.; Tashiro, K. Phase-transition behavior of a crystalline polymer near the melting point: case studies of the ferroelectric phase transition of poly(vinylidene fluoride) and the β-to-α transition of trans-1,4-polyisoprene. Polym. J. 2013, 45, 1107–1114.

    Article  CAS  Google Scholar 

  41. Ratri, P. J.; Tashiro, K. Application of the simultaneous measurement system of WAXD, SAXS and transmission FTIR spectra to the study of structural changes in the cold- and melt-crystallization processes of trans-1,4-polyisoprene. Polym. J. 2013, 45, 1019–1026.

    Article  Google Scholar 

  42. Ratri, P. J.; Tashiro, K. Structural study of the ordering processes of cold drawn trans-1,4-polyisoprene samples in the heating process on the basis of wide- and small-angle X-ray scattering measurements. J. Phys. Conf. Ser. 2018, 1095, 012029.

    Article  Google Scholar 

  43. Weng, G. S.; Bao, J. B.; Xu, Y. C.; Chen, Z. R. New insight into stretch induced structural evolution of a trans-1,4-polyisoprene characterized by real time synchrotron WAXS and SAXS measurements. J. Polym. Res. 2013, 20, 104.

    Article  Google Scholar 

  44. Weng, G. S.; Wu, J. R.; Xu, Y. C.; Bao, J. B.; Huang, G.; Chen, Z. R. Study on the stretch induced phase transition of α trans-1,4-polyisoprene by in-situ SAXS and WAXS measurements. J. Polym. Res. 2014, 21, 576.

    Article  Google Scholar 

  45. Du, A.; Liu, K.; Yang, L.; Gu, Z. Comparison of crystallization behavior of trans-1,4-polyisoprene under different crystallization temperature, pressure and tension. J. Polym. Res. 2019, 26, 172.

    Article  Google Scholar 

  46. G’Sell, C.; Hiver, J. M.; Dahoun, A.; Souahi, A. Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 1992, 27, 5031–5039.

    Article  Google Scholar 

  47. Gavish, M.; Brennan, P.; Woodward, A. E. Infrared spectral correlations for crystalline and amorphous trans-1,4-polyisoprene. Macromolecules 1988, 21, 2075–2079.

    Article  CAS  Google Scholar 

  48. Flory, P. J. Theory of elastic mechanisms in fibrous proteins. J. Am. Chem. Soc. 1956, 78, 5222–5235.

    Article  CAS  Google Scholar 

  49. Keller, A.; Cheng, S. Z. D. The role of metastability in polymer phase transitions. Polymer 1998, 39, 4461–4487.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21922308 and 22005196) and the Youth Innovation Promotion Association of CAS (No. Y201908). The authors thank BSRF for providing the beamtime (1W2A). C. Z. thanks Chengao Qian for assistance in FTIR measurement and Wenxian Hu for writing codes for calculating the true strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ming Liu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CB., Wang, L., Yang, B. et al. Stress-induced Solid-Solid Crystal Transition in Trans-1,4-polyisoprene. Chin J Polym Sci 40, 256–265 (2022). https://doi.org/10.1007/s10118-022-2659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2659-7

Keywords

Navigation