Skip to main content
Log in

The Influence of Peroxide on Bubble Stability and Rheological Properties of Biobased Poly(lactic acid)/Natural Rubber Blown Films

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

This study investigated the effects of natural rubber (NR) and an organic peroxide on the rheological properties, mechanical properties, morphology, and bubble stability during film blowing of poly(lactic acid) (PLA). The NR and peroxide contents were varied from 0 wt% to 25 wt% and 0 wt% to 0.5 wt%, respectively. The results confirmed that the presence of well-dispersed NR could significantly improve the toughness, elongation at break, and processability of PLA films, where the optimal amount of NR was 15 wt%. For the reactive blending with peroxide, a suitable peroxide content for good film toughness and clarity was 0.03 wt%, while the higher content of 0.1 wt% could provide slightly higher processability. These contents are considered much lower than that in the PLA system (without NR), which required up to 0.5 wt% peroxide. The rheological studies indicated that the melt strength, the storage modulus (G′) and complex viscosity (η′) at low frequency could be correlated with good film blowing processability of the PLA/NR films at low gel contents. These parameters failed to correlate in the films having high gel contents as the deformation rate experienced by each test was different leading to the different levels of response to the type and amount of gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mallet, B.; Lamnawar, K.; Maazouz, A. Improvement of blown film extrusion of poly(lactic acid): structure-processing-properties relationships. Polym. Eng. Sci. 2014, 54, 840–857.

    Article  CAS  Google Scholar 

  2. Karkhanis, S. S.; Stark, N. M.; Sabo, R. C.; Matuana, L. M. Blown film extrusion of poly(lactic acid) without melt strength enhancers. J. Appl. Polym. Sci. 2017, 134, 45212.

    Article  Google Scholar 

  3. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Biopolymer blends based on poly(lactic acid): shear and elongation rheology/structure/blowing process relationships. Polymers 2015, 7, 939–962.

    Article  CAS  Google Scholar 

  4. Ding, Y.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PBAT-PLA tri-block copolymers: effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends. Polym. Degrad. Stabil. 2018, 147, 41–48.

    Article  CAS  Google Scholar 

  5. Wu, N.; Zhang, H. Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Mater. Lett. 2017, 192, 17–20.

    Article  CAS  Google Scholar 

  6. Nofar, M.; Salehiyan, R.; Ciftci, U.; Jalali, A.; Durmuş, A. A. Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Compos. B. Eng. 2020, 182, 107661.

    Article  CAS  Google Scholar 

  7. Nyambo, C.; Misra, M.; Mohanty, A. K. Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene. J. Mater. Sci. 2012, 47, 5158–5168.

    Article  CAS  Google Scholar 

  8. Suparanon, T.; Surisaeng, J.; Phusunti, N.; Phetwarotai, W. Synergistic efficiency of tricresyl phosphate and montmorillonite on the mechanical characteristics and flame retardant properties of polylactide and poly(butylene succinate) blends. Chinese J. Polym. Sci. 2018, 36, 620–631.

    Article  CAS  Google Scholar 

  9. Gu, X.; Hu, L.; Fu, Z.; Wang, H.; Li, Y. Reactive TiO2 nanoparticles compatibilized PLLA/PBSU blends: fully biodegradable polymer composites with improved physical, antibacterial and degradable properties. Chinese J. Polym. Sci. 2021, 39, 1645–1656.

    Article  CAS  Google Scholar 

  10. Zhang, W.; Yu, Z.; Yanmo, C. Modified brittle poly(lactic acid) by biodegradable hyper branch poly(ester amide). Iran. Polym. J. 2008, 12, 891–898.

    Google Scholar 

  11. Huang, J.; Mou, W.; Wang, W.; Lv, F.; Chen, Y. Influence of DCP content on the toughness and morphology of fully biobased ternary PLA/NR-PMMA/NR TPVs with co-continuous phase structure. Polym-Plast. Tech. Mat. 2020, 59, 674–684.

    CAS  Google Scholar 

  12. Sathornluck, S.; Choochottiros, C. Modification of epoxidized natural rubber as a PLA toughening agent. J. Appl. Polym. Sci. 2019, 48267

  13. Triampanichkul, N.; Boochathum, P. Hydroxylated natural rubber effect on crystallinity and mechanical properties of PLA. Key Eng. Mater. 2019, 798, 310–315.

    Article  Google Scholar 

  14. Phattarateera, S.; Pattamaprom, C. The viscosity effect of masticated natural vs. synthetic isoprene rubber on toughening of polylactic acid. Int. J. Polym. Sci. 2019, 5679871

  15. Phattarateera, S.; Pattamaprom, C. Comparative performance of functional rubbers on toughness and thermal property improvement of polylactic acid. Mater. Today Commun. 2019, 19, 374–382.

    Article  CAS  Google Scholar 

  16. Pattamaprom, C.; Chareonsalung, W.; Teerawattananon, C.; Ausopron, S.; Prachayawasin, P.; Van Puyvelde, P. Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber. Iran. Polym. J. 2016, 25, 169–178.

    Article  CAS  Google Scholar 

  17. Jaratrotkamjorn, R.; Khaokong, C.; Tanrattanakul, V. Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J. Appl. Polym. Sci. 2012, 124, 5027–5036.

    CAS  Google Scholar 

  18. Pongtanayut, K.; Thongpin, C.; Santawitee, O. The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Proc. 2013, 34, 888–897.

    Article  CAS  Google Scholar 

  19. Xia, S.; Liu, X.; Wang, J.; Kan, Z.; Chen, H.; Fu, W.; Li, Z. Role of poly(ethylene glycol) grafted silica nanoparticle shape in toughened PLA-matrix nanocomposites. Compos. B Eng. 2019, 168, 398–405.

    Article  CAS  Google Scholar 

  20. Zhang, C.; Wang, L.; Zhai, T.; Wang, X.; Dan, Y.; Turng, L. S. The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2016, 53, 403–413.

    Article  CAS  Google Scholar 

  21. Behera, K.; Chang, Y. H.; Yadav, M.; Chiu, F. C. Enhanced thermal stability, toughness, and electrical conductivity of carbon nanotube-reinforced biodegradable poly(lactic acid)/poly(ethylene oxide) blend-based nanocomposites. Polymer 2020, 189, 122002.

    Article  Google Scholar 

  22. Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Properties and characterization of biodegradable poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay: a study of crystallization kinetics, rheology, and compostability. J. Thermoplast. Compos. Mater. 2016, 29, 443–463.

    Article  CAS  Google Scholar 

  23. Maiza, M.; Benaniba, M. T.; Massardier-Nageotte, V. Plasticizing effects of citrate esters on properties of poly(lactic acid). J. Polym. Eng. 2016, 36, 371–380.

    Article  CAS  Google Scholar 

  24. Rapa, M.; Darie-Nita, R. N.; Vasile, C. Influence of plasticizers over some physico-chemical properties of PLA. Mater. Plast. 2017, 54, 73–78.

    Article  Google Scholar 

  25. Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super tough poly(lactic acid) blends: a comprehensive review. RSCAdv. 2020, 10, 13316–13368.

    CAS  Google Scholar 

  26. Huang, Y.; Zhang, C.; Pan, Y.; Wang, W.; Jiang, L.; Dan, Y. Study on the effect of dicumyl peroxide on structure and properties of poly(lactic acid)/natural rubber blend. J. Polym. Environ. 2013, 21, 375–387.

    Article  CAS  Google Scholar 

  27. Phetphaisit, C. W.; Wapanyakul, W.; Phinyocheep, P. Effect of modified rubber powder on the morphology and thermal and mechanical properties of blown poly(lactic acid)-hydroxyl epoxidized natural rubber films for flexible film packaging. J. Appl. Polym. Sci. 2019, 47503.

  28. Dean, K. M.; Petinakis, E.; Meure, S.; Yu, L.; Chryss, A. Melt strength and rheological properties of biodegradable poly(lactic acid) modified via alkyl radical-based reactive extrusion processes. J. Polym. Environ. 2012, 20, 741–747.

    Article  CAS  Google Scholar 

  29. Chanthot, P.; Kaeophimmueang, N.; Larpsuriyakul, P.; Pattamaprom, C. The effect of dynamic vulcanization systems on the mechanical properties and phase morphology of PLA/NR reactive blends. J. Polym. Res. 2021, 28, 1–12.

    Article  Google Scholar 

  30. Si, W. J.; Yuan, W. Q.; Li, Y. D.; Chen, Y. K.; Zeng, J. B. Tailoring toughness of fully biobased poly(lactic acid)/natural rubber blends through dynamic vulcanization. Polym. Test. 2018, 65, 249–255.

    Article  CAS  Google Scholar 

  31. Deetuam, C.; Samthong, C.; Pratumpol, P.; Somwangthanaroj, A. Improvements in morphology, mechanical and thermal properties of films produced by reactive blending of poly(lactic acid)/natural rubber latex with dicumyl peroxide. Iran. Polym. J. 2017, 26, 615–628.

    Article  CAS  Google Scholar 

  32. Sirisinha, K.; Somboon, W. Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly (butylene adipate-co-terephthalate) and polylactide. J. Appl. Polym. Sci. 2012, 124, 4986–4992.

    CAS  Google Scholar 

  33. Rytlewski, P.; Zenkiewicz, M.; Malinowski, R. Influence of dicumyl peroxide content on thermal and mechanical properties of polylactide. Int. Polym. Process. 2011, 26, 580–586.

    Article  CAS  Google Scholar 

  34. Yamoum, C.; Maia, J.; Magaraphan, R. Rheological and thermal behavior of PLA modified by chemical crosslinking in the presence of ethoxylated bisphenol A dimethacrylates. Polym. Adv. Technol. 2017, 28, 102–112.

    Article  CAS  Google Scholar 

  35. Yuan, D.; Chen, K.; Xu, C.; Chen, Z.; Chen, Y. Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohydr. Polym. 2014, 113, 438–445.

    Article  CAS  Google Scholar 

  36. Sampath, W. D. M.; Egodage, S. M.; Edirisinghe, D. G. Effect of peroxide loading on properties of natural rubber and low-density polyethylene composites. J. Phys. Sci. 2019, 30, 49–69.

    Article  CAS  Google Scholar 

  37. Kruželák, J.; Sýkora, R.; Hudec, I. Peroxide vulcanization of natural rubber. Part I: effect of temperature and peroxide concentration. J. Polym. Eng. 2014, 34, 617–624.

    Article  Google Scholar 

  38. Rajan, R.; Varghese, S.; George, K. E. Kinetics of peroxide vulcanization of natural rubber. Prog. Rubber Plast. Recycl. Technol. 2012, 28, 201–220.

    Article  CAS  Google Scholar 

  39. Hagen, R.; Salmén, L.; Stenberg, B. Effects of the type of crosslink on viscoelastic properties of natural rubber. J. Polym. Sci., Part B: Polym. Phys. 1996, 34, 1997–2006.

    Article  CAS  Google Scholar 

  40. Chantamunee, T.; Pattamaprom, C. Synthesis of PLA-g-NR by peroxide-induced melt-grafting as a biobased impact modifier for poly(lactic acid). TJST. 2020, 28, 1889–1902.

    Google Scholar 

  41. Yuan, D.; Xu, C.; Chen, Z.; Chen, Y. Crosslinked bicontinuous biobased polylactide/natural rubber materials: super toughness, “net-like”-structure of NR phase and excellent interfacial adhesion. Polym. Test. 2014, 38, 73–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Science Research and Innovation (TSRI) through the Royal Golden Jubilee Ph.D. Program Scholarship (No. PHD/0058/2557) and through the research funding from the National Research Council and TSRI (No. RDG62T0029). The additional financial support from the research unit in polymer rheology and processing, Thammasat University, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cattaleeya Pattamaprom.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanthot, P., Kerddonfag, N. & Pattamaprom, C. The Influence of Peroxide on Bubble Stability and Rheological Properties of Biobased Poly(lactic acid)/Natural Rubber Blown Films. Chin J Polym Sci 40, 197–207 (2022). https://doi.org/10.1007/s10118-022-2653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2653-0

Keywords

Navigation