Skip to main content
Log in

Flexible Electrochromic Poly(thiophene-furan) Film via Electrodeposition with High Stability

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Flexible electrochromic (EC) materials have an urgent demand in the current electronic equipment market due to their technological interest and applications. However, at present, few flexible EC devices developed by industry exist due to some problems and challenges still to be solved such as flexibility. In this work, we have successfully synthesized a novel thiophene-furan (TFu) monomer via Stille coupling reaction, and facilely electrochemically polymerized in a neutral Bu4NPF6-CH2Cl2 electrolyte system to afford the corresponding poly(thiophene-furan) (PTFu) polymer film with good flexibility. The electrochemical and photoelectrochemical analyses of the as-prepared PTFu demonstrate that it has achieved the improved EC performance compared with pure polyfuran and polythiophene polymers, and as a result it possesses favorable EC parameters manifested as a reasonable ΔT (32.1%), faster response (1.38 s), excellent coloration efficiency (CE, 300.9 cm2·C−1), and after a continuous redox process up to 2000 s, its optical stability can be maintained at 96%, and even after 3000 s, it can still be maintained at 80%. In addition, the successful assembly of the electrochromic device of PTFu film can easily realize the reversible conversion of the color from orange to gray. All these systematic studies suggest that the as-prepared flexible PTFu film is a promising candidate for EC materials and has great potential interest for versatile EC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvizu, M. A.; Qu, H. Y.; Cindemir, U.; Qiu, Z.; Rojas-González, E. A.; Primetzhofer, D.; Granqvist, C. G.; Osterlund, L.; Niklasson, G. A. Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment. J. Mater. Chem. A 2019, 7, 2908–2918.

    CAS  Google Scholar 

  2. Chen, Y.; Wang, Y.; Sun, P.; Yang, P.; Du, L.; Mai, W. Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 2015, 3, 20614–20618.

    CAS  Google Scholar 

  3. Chen, K. C; Hsu, C. Y.; Hu, C. W.; Ho, K. C. A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency. Sol. Energy Mater. Sol. Cells 2011, 95, 2238–2245.

    CAS  Google Scholar 

  4. Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes. Nano Lett. 2004, 4, 1231–1235.

    CAS  Google Scholar 

  5. Lin, C. L.; Chen, C. Y.; Yu, H. F.; Ho, K. C. Comparisons of the electrochromic properties of poly(hydroxymethyl 3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene) thin films and the photoelectrochromic devices using these thin films. Sol. Energy Mater. Sol. Cells 2019, 202, 110132.

    CAS  Google Scholar 

  6. Zheng, R.; Fan, Y.; Wang, Y.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L. A bifunctional triphenylamine-based electrochromic polymer with excellent self-healing performance. Electrochim. Acta 2018, 286, 296–303.

    CAS  Google Scholar 

  7. Yin, Y.; Li, W.; Zeng, X.; Xu, P.; Murtaza, I.; Guo, Y.; Liu, Y.; Li, T.; Cao, J.; He, Y.; Meng, H. Design strategy for efficient solution-processable red electrochromic polymers based on unconventional 3,6-bis(dodecyloxy)thieno[3,2-b]thiophene building blocks. Macromolecules 2018, 51, 7853–7862.

    CAS  Google Scholar 

  8. Sheberla, D.; Patra, S.; Wijsboom, Y. H.; Sharma, S.; Sheynin, Y.; Haj-Yahia, A. E.; Barak, A. H.; Gidron, O.; Bendikov, M. Conducting polyfurans by electropolymerization of oligofurans. Chem. Sci. 2015, 6, 360–371.

    CAS  PubMed  Google Scholar 

  9. Güneş, A.; Cihaner, A.; Önal, A. M. Synthesis and electro-optical properties of new conjugated hybrid polymers based on furan and fluorene units. Electrochim. Acta 2013, 89, 339–345.

    Google Scholar 

  10. Zhen, S.; Xu, J.; Lu, B. Tuning the optoelectronic properties of polyfuran by design of furan-EDOT monomers and free-standing films with enhanced redox stability and electrochromic performances. Electrochim. Acta 2014, 146, 666–678.

    CAS  Google Scholar 

  11. Kavak, E.; Us, C. N.; Yavuz, E.; Kivrak, A.; içli Özkut, M. A camouflage material: p- and n-type dopable furan based low band gap electrochromic polymer and its EDOT based copolymer. Electrochim. Acta 2015, 182, 537–543.

    CAS  Google Scholar 

  12. Wang, W. H.; Chang, J. C.; Wu, T. Y. 4-(uurnn-2-yl)phenyl-containing polydithienylpyrroles as promising electrodes for high contrast and coloration efficiency electrochromic devices. Org. Electron. 2019, 74, 23–32.

    CAS  Google Scholar 

  13. Yao, W.; Shen, L.; Liu, P.; Liu, C.; Xu, J.; Jiang, Q.; Liu, G.; Nie, G.; Jiang, F. Electrochemical doping engineering tuning of the thermoelectric performance of a π-conjugated free-standing poly(thiophene-furan) thin-film. Mater. Chem. Front. 2020, 4, 597–604.

    CAS  Google Scholar 

  14. Barth, M.; Guilerez, S.; Bidan, G.; Bras, G. R. M.; Apkowski, M. A. L. Electrochemical investigation of regioregular alkyl substituted oligothiophenes. Electrochim. Acta 2000, 45, 4409–4417.

    CAS  Google Scholar 

  15. Fu, L.; Qu, Q.; Holze, R.; Kondratiev, V. V.; Wu, Y. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?. J. Mater. Chem. A 2019, 7, 14937–14970.

    CAS  Google Scholar 

  16. Sun, N.; Meng, S.; Chao, D.; Zhou, Z.; Du, Y.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C. Highly stable electrochromic and electrofluorescent dualswitching. Polym. Chem. 2016, 7, 6055–6063.

    CAS  Google Scholar 

  17. Shi, G. Q.; Jin, S.; Xue, G.; Li, C. A conducting polymer film stronger than aluminum. Science 1995, 267, 994–996.

    CAS  PubMed  Google Scholar 

  18. Rusch, B.; Vielstich, W. Polythiophenes via thiophene, bithiophene and terthiophene in propylene carbonate: an electrochemical and in-situ FTIR study. J. Electroanal. Chem. 1994, 370, 109–117.

    Google Scholar 

  19. Wan, X. B.; Yan, F.; Jin, S.; Liu, X. R.; Xue, G. Low potential electrochemical synthesis of polyfuran and characterization of the obtained free-standing film. Chem. Mater. 1999, 11, 2400–2407.

    CAS  Google Scholar 

  20. Wang, B.; Zhao, J.; Cui, C.; Liu, R.; Liu, J.; Wang, H.; Liu, H. Electrochromic properties of a novel low band gap conjugated copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene. Electrochim. Acta 2011, 56, 4819–4827.

    CAS  Google Scholar 

  21. Ming, S.; Lin, K.; Zhang, H.; Jiang, F.; Liu, P.; Xu, J.; Nie, G.; Duan, X. Electrochromic polymers with multiple redox couples applied to monitor energy storage states of supercapacitors. Chem. Commun. 2020, 56, 5275–5278.

    CAS  Google Scholar 

  22. Xu, Z.; Zhang, Y.; Wang, B.; Zhi, L.; Zhao, J.; Xie, Y. Yellow-to-blue switching of indole[3,2-b]carbazole-based electrochromic polymers and the corresponding electrochromic devices with outstanding photopic contrast, fast switching speed, and satisfactory cycling stability. Electrochim. Acta 2019, 302, 373–384.

    CAS  Google Scholar 

  23. Son, S.; Gang-Young, Lee; Sangwon Kim; Park W. T.; Park, S. A.; Noh, Y. Y.; Park, T. Control of crystallite orientation in diketopyrrolopyrrole-based semiconducting polymers via tuning of intermolecular interactions. ACS Appl. Mater. Interfaces 2019, 11, 10751–10757.

    CAS  PubMed  Google Scholar 

  24. Carlé, E. J.; Andreasen, W. J.; Jørgensen, M.; Christian, Krebs, C. F. Low band gap polymers based on 1,4-dialkoxybenzene, thiophene, bithiophene donors and the benzothiadiazole acceptor. Sol. Energy Mater. Sol. Cells 2010, 94, 774–780.

    Google Scholar 

  25. Tao, Y.; Zhang, K.; Zhang, Z.; Cheng, H. Novel electrochromic copolymers based on thiophene-anthracene derivatives via electrochemical polymerization in boron trifluoride diethyl etherate. J. Electroanal. Chem. 2016, 769, 80–88.

    CAS  Google Scholar 

  26. Crispin, X.; Marciniak, S.; Osikowicz, W.; Zotti, G.; Denier, A. W.; Louwet, F.; Fahlman, M.; Groenendaal, L.; Schryver, F. D.; Salaneck, W. R. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): a photoelectron spectroscopy study. J. Polym. Sci., Part B:Polym. Phys. 2003, 41, 2561–2583.

    CAS  Google Scholar 

  27. Cai, S.; Wen, H.; Wang, S.; Niu, H.; Wang, C.; Jiang, X.; Bai, X.; Wang, W. Electrochromic polymers electrochemically polymerized from 2,5-dithienylpyrrole (DTP) with different triarylamine units: synthesis, characterization and optoelectrochemical properties. Electrochim. Acta 2017, 228, 332–342.

    CAS  Google Scholar 

  28. Christiansen, D. T.; Reynolds, J. R. A fruitful usage of a dialkylthiophene comonomer for redox stable wide-gap gathodically coloring electrochromic polymers. Macromolecules 2018, 51, 9250–9258.

    CAS  Google Scholar 

  29. Liu, X. F.; Hu, Y. J.; Shen, L. L.; Zhang, G.; Cao, T. M.; Xu, J. K.; Zhao, F.; Hou, J.; Liu, H. X.; Jiang, F. X. Novel copolymers based on PEO bridged thiophenes and 3,4-ethylenedioxythiophene: electrochemical, optical, and electrochromic properties. Electrochim. Acta 2018, 288, 52–60.

    CAS  Google Scholar 

  30. Wang, Y.; Zheng, R.; Luo, J.; Malik, H. A.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L.; Yao, X. Self-healing dynamically cross linked versatile polymer electrolyte: a novel approach towards high performance, flexible electrochromic devices. Electrochim. Acta 2019, 320, 134489.

    CAS  Google Scholar 

  31. Zhen, S. J.; Lu, B. Y.; Xu, J. K.; Zhang, S. M.; Li, Y. Z. Poly(mono-, bi-or trifuran): effect of oligomer chain length on the electropolymerization performances and polymer properties. RSCAdv. 2014, 4, 14001–14012.

    CAS  Google Scholar 

  32. Dai, Y.; Li, W.; Zhao, R.; Huang, Q.; Xu, N.; Yuan, F.; Zhang, C. Quadruple thiophene based electrochromic electrodeposited film as high performance hybrid energy storage system. Electrochim. Acta 2019, 318, 322–332.

    CAS  Google Scholar 

  33. Gu, H.; Ming, S.; Lin, K.; Chen, S.; Liu, X.; Lu, B.; Xu, J. Isoindigo as an electron-deficient unit for high-performance polymeric electrochromics. Electrochim. Acta 2018, 260, 772–782.

    CAS  Google Scholar 

  34. Ming, S.; Li, Z.; Zhen, S.; Liu, P.; Jiang, F.; Nie, G.; Xu, J. Highperformance D-A-D type electrochromic polymer with π spacer applied in supercapacitor. Chem. Eng. J. 2020, 390, 124572.

    CAS  Google Scholar 

  35. Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320.

    CAS  PubMed  Google Scholar 

  36. Glenis, S.; Benz, M.; LeGoff, E.; Schindler, J. L.; Kanatzidis, M. G. Polyfuran: a new synthetic and electronic approach properties. J. Am. Chem. Soc. 1993, 115, 12519–12525.

    CAS  Google Scholar 

  37. Guo, Y.; Hao, X.; Tao, Y.; Zhang, C.; Cheng, H. Preparation, characterizations and electrochromic properties of copolymers containing 5,10,15,20-tetra(thienyl) porphyrin and thiophene derivatives. Synth. Met. 2019, 258, 116202.

    Google Scholar 

  38. Zhang, L.; Luo, F.; Li, W.; Yan, S.; Chen, Z.; Zhao, R.; Ren, N.; Wu, Y.; Chen, Y.; Zhang, C. Conjugation-broken thiophene-based electropolymerized polymers with well-defined structures: effect of conjugation lengths on electrochromic properties. Phys. Chem. Chem. Phys. 2019, 21, 24092–24100.

    CAS  PubMed  Google Scholar 

  39. Feng, F.; Kong, L.; Du, H.; Zhao, J.; Zhang, J. Donor-acceptor-type copolymers based on 3,4-propylenedioxy-thiophene and 5,6-difluorobenzotriazole: synthesis and electrochromic properties. Polymers 2018, 10.

  40. Atar, A. B.; Jeong, J. Y.; Han, S. H.; Park, J. S. Efficient blue-to-transmissive electrochromic transitions of alkylated quinoxaline-thiophene based donor-acceptor type conjugated polymers. Polymer 2018, 153, 95–102.

    CAS  Google Scholar 

  41. Abaci, U.; Ustalar, A.; Yilmaz, M.; Guney, H. Y. Synthesis of new 2,5-di(thiophen-2-yl)furan-3-carbonitrile derivatives and investigation of the electrochromic properties of homopolymers and co-polymers with EDOT. RSC Adv. 2016, 6, 27836–27845.

    CAS  Google Scholar 

  42. Hu, B.; Li, C. Y.; Chu, J. W.; Liu, Z. C.; Zhang, X. L.; Jin, L. Electrochemical and electrochromic properties of polymers based on 2,5-di(2-thienyl)-1H-pyrrole and different phenothiazine units. J. Electrochem. Soc. 2019, 166, H1–H11.

    CAS  Google Scholar 

  43. Zhang, Y.; Chen, S.; Zhang, Y.; Du, H.; Zhao, J. Design and characterization of new D-A type electrochromic conjugated copolymers based on indolo[3,2-b]carbazole, isoindigo and thiophene units. Polymers 2019, 11, 1626.

    PubMed Central  Google Scholar 

  44. Yue, H.; Kong, L.; Li, X.; Zhang, Y.; Du, H.; Dong, Y.; Zhao, J.; Zhang, J. Soluble neutral green-colored polymers based on propylenedioxythiophene, benzene and thieno[3,4-b]pyrazine, and their electrochromic properties. Synth. Met. 2020, 261, 116320.

    CAS  Google Scholar 

  45. Cai, G.; Darmawan, P.; Cui, M.; Wang, J.; Chen, J.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 2016, 6, 1501882.

    Google Scholar 

  46. Díaz-Sánchez, J.; Rosas-Aburto, A.; Vivaldo-Lima, E.; Hernández-Alcántara, J. M.; Gracia-Mora, I.; Vázquez-Torres, H.; Ordóñez, L. C.; Roquero, P.; Gimeno, M. Development and characterization of a flexible electrochromic device based on polyaniline and enzymatically synthesized poly(gallic acid). Synth. Met. 2017, 223, 43–48.

    Google Scholar 

  47. Cansu-Ergun, E. G. Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers. Chinese J. Polym. Sci. 2019, 37, 28–35.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51762018 and 51863009), the Natural Science Foundation of Jiangxi Province (Nos. 20165BCB18016, 20181ACB20010, and 20202ACBL204005), and Jiangxi Provincial Department of Education (Nos. GJJ190584 and GJJ190612).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Kun Xu or Feng-Xing Jiang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, WQ., Liu, PP., Zhou, WQ. et al. Flexible Electrochromic Poly(thiophene-furan) Film via Electrodeposition with High Stability. Chin J Polym Sci 39, 344–354 (2021). https://doi.org/10.1007/s10118-021-2501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2501-7

Keywords

Navigation