Skip to main content
Log in

A practical approach for generation of WO3-based flexible electrochromic devices

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We managed to provide one-step facile electrochromic device (ECD) preparation to incorporate two cathodic coloring components into lithium ion (Li+)-doped UV-curable electrolyte. The hybrid-based flexible ECDs were fabricated by using tungsten trioxide (WO3) and poly(3,4-ethylenedioxythiophene) (PEDOT) as electrochromic components without the need for deposition procedures. The influences of lithium salts (lithium perchlorate (LiClO4) and lithium trifluoromethanesulfonate (LiTRIF)) on the electrochromic performance of flexible ECDs were evaluated. The electrochromic and the intrinsic kinetic features of all ECDs were investigated via transmittance and electrochemical impedance measurements. The ECD fabricated from LiClO4 electrolyte exhibited the highest optical transmittance modulation of 38.7% under an applied potential of ± 2 V. To evaluate the mechanical robustness of the flexible ECDs, a bending cycle test was also conducted. After performing repetitive bending cycle tests, the optical modulation of ECD fabricated from LiTRIF electrolyte was remained stable for applied potentials of ± 2 V. Especially, the flexible ECDs prepared from LiTRIF showed high mechanical bendability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pan M, Zhao S, Ma L, Wu N, Xiao D (2019) All-in-one electrochromic devices with biological tissues used as electronic components. Sol Energy Mater Sol Cells 189:27–32

    CAS  Google Scholar 

  2. Keersmaecker MD, Lang AW, Österholm AM, Reynolds JR (2018) All polymer solution processed electrochromic devices: a future without indium tin oxide? ACS Appl Mater Inter 10:31568–31579

    Google Scholar 

  3. Zhao Q, Fang Y, Qiao K, Wei W, Yao Y, Gao Y (2019) Printing of WO3/ITO nanocomposite electrochromic smart windows. Sol Energy Mater Sol Cells 194:95–102

    CAS  Google Scholar 

  4. Cho SM, Kim T-Y, Ah CS, Song J, Cheon SH, Ryu H, Kim JY, Kim Y-H, Hwang C-S (2018) Electrochromic device with self-diffusing function for light adaptable displays. Sol Energy Mater Sol Cells 177:89–96

    CAS  Google Scholar 

  5. Österholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, Reynolds JR (2015) Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl Mater Inter 7:1413–1421

    Google Scholar 

  6. Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27:2–18

    CAS  Google Scholar 

  7. Viñuales A, Alesanco Y, Cabañero G, Sobrado J, Tena-Zaera R (2017) Incorporating paper matrix into flexible devices based on liquid electrochromic mixtures: enhanced robustness, durability and multi-color versatility. Sol Energy Mater Sol Cells 167:22–27

    Google Scholar 

  8. Lee H, Kim M, Kim I, Lee H (2016) Flexible and stretchable optoelectronic devices using silver nanowires and graphene. Adv Mater 28(22):4541–4548

    CAS  PubMed  Google Scholar 

  9. Sun S, Lu T, Chang X, Hu X, Dong L, Yin Y (2016) Flexible electrochromic device based on WO3·H2O nanoflakes synthesized by a facile sonochemical method. Mater Lett 185:319–322

    CAS  Google Scholar 

  10. Eh AL-S, Tan AWM, Cheng X, Magdassi S, Lee PS (2017) Recent advances in flexible electrochromic devices: the prerequisites, Challenges and Prospects. Energy Technol. https://doi.org/10.1002/ente.201700705

  11. Shakhnov VA, Vlasov AL, Tokarev SV (2016) Electrochromic thin-film components for information representation systems. IOP Conf Ser Mater Sci Eng 151:012005

    Google Scholar 

  12. Zinatloo-Ajabshir S, Salehi Z, Amiri O, Salavati-Niasari M (2019) Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. Int J Hydrog Energy 44:20110–20120

    CAS  Google Scholar 

  13. Zinatloo-Ajabshir S, Salehi Z, Amiri O, Salavati-Niasari M (2019) Simple fabrication of Pr2Ce2O7 nanostructures via a new and ecofriendly route; a potential electrochemical hydrogen storage material. J Alloy Compd 791:792–799

    CAS  Google Scholar 

  14. Zinatloo-Ajabshir S, Salehi Z, Salavati-Niasari M (2019) Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and coulombic efficiency. J Clean Prod 215:480–487

    CAS  Google Scholar 

  15. Zinatloo-Ajabshir S, Morassaei MS, Salavati-Niasari M (2019) Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J Clean Prod 222:103–110

    CAS  Google Scholar 

  16. Zhu Y, Otley MT, Alhashmi AF, Kumar A, Zhang X, Mamangun DMD, Li M, Arden BG, Sotzing GA (2014) Electrochromic properties as a function of electrolyte on the performance of electrochromic devices consisting of a single-layer polymer. Org Electron 15:1378–1386

    CAS  Google Scholar 

  17. Gao L-p, G-j D, Wang Y-c, Yang Y-l (2011) Preparation of UV curing crosslinked polyviologen film and its photochromic and electrochromic performances. Appl Surf Sci 258:1184–1191

    CAS  Google Scholar 

  18. Ding Y, Invernale MA, Mamangun DMD, Kumar A, Sotzing GA (2011) A simple, low waste and versatile procedure to make polymer electrochromic devices. J Mater Chem 21:11873–11878

    CAS  Google Scholar 

  19. Cossari P, Cannavale A, Gambino S, Gigli G (2016) Room temperature processing for solid-state electrochromic devices on single substrate: from glass to flexible plastic. Sol Energy Mater Sol Cells 155:411–420

    CAS  Google Scholar 

  20. Jensen J, Hösel M, Dyer AL, Krebs FC (2015) Development and manufacture of polymer-based electrochromic devices. Adv Funct Mater 25:2073–2090

    CAS  Google Scholar 

  21. Chidichimo G, Benedittis MD, Lanzo J, Simone BCD, Imbardelli D, Gabriele B, Veltri L, Salerno G (2007) Solid thermoplastic laminable electrochromic film. Chem Mater 19:353–358

    CAS  Google Scholar 

  22. Alamer FA, Otley MT, Zhu Y, Kumar A, Sotzing GA (2015) Dependency of polyelectrolyte solvent composition on electrochromic photopic contrast. Sol Energy Mater Sol Cells 132:131–135

    CAS  Google Scholar 

  23. Cossari P, Simari C, Cannavale A, Gigli G, Nicotera I (2018) Advanced processing and characterization of Nafion electrolyte films for solid-state electrochromic devices fabricated at room temperature on single substrate. Solid State Ionics 317:46–52

    CAS  Google Scholar 

  24. Eren E, Alver C, Karaca GY, Uygun E, Oksuz AU (2018) Enhanced electrochromic performance of WO3 hybrids using polymer plasma hybridization process. Synth Met 235:115–124

    CAS  Google Scholar 

  25. Yue Y, Li H, Li K, Wang J, Wang H, Zhang Q, Li Y, Chen P (2017) High-performance complementary electrochromic device based on WO3·0.33H2O/PEDOT and Prussian blue electrodes. J Phys Chem Solids 110:284–289

    CAS  Google Scholar 

  26. Alamer FA, Otley MT, Ding Y, Sotzing GA (2013) Solid-state high-throughput screening for color tuning of electrochromic polymers. Adv Mater 25(43):6256–6260

    CAS  PubMed  Google Scholar 

  27. Otley MT, Alamaer FA, Zhu Y, Singaviranon A, Zhang X, Li M, Kumar A, Sotzing GA (2014) Acrylated poly(3,4-propylenedioxythiophene) for enhancement of lifetime and optical properties for single-layer electrochromic devices. ACS Appl Mater Interfaces 6(3):1734–1739

    CAS  PubMed  Google Scholar 

  28. Eren E, Karaca GY, Koc U, Oksuz L, Oksuz AU (2017) Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates. Thin Solid Films 634:40–50

    CAS  Google Scholar 

  29. Deepa M, Sharma N, Agnihotry SA, Chandra R, Sekhon SS (2002) Effect of mixed salts on the properties of gel polymeric electrolytes. Solid State Ionics 148:451–455

    CAS  Google Scholar 

  30. Yamada M, Hagiwara H, Torigoe H, Matsumoto N, Kojima M, Dahan FÅ, Tuchagues J-P, Re N, Iijima S (2006) A variety of spin-crossover behaviors depending on the counter anion: two-dimensional complexes constructed by NH···Cl_ hydrogen bonds,[FeIIH3LMe]Cl·X (X = PF6_, AsF6, SbF6_, CF3_; H3LMe = Tris[2-{[(2- methylimidazol-4-yl)methylidene]amino}ethyl]amine). Chem Eur J 12(17):4536–4549

    CAS  PubMed  Google Scholar 

  31. Ue M (1994) Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J Electrochem Soc 141:3336–3342

    CAS  Google Scholar 

  32. Ding J, Liu Z, Wei A, Chen TP, Zhang H (2018) Study of electrochromic characteristics in the near-infrared region of electrochromic devices based on solution-processed amorphous WO3 films. Mater Sci Semicond Process 88:73–78

    CAS  Google Scholar 

  33. Zhang J, Tu J-P, Zhang D, Qiao Y-Q, Xia X-H, Wang X-l, C-d G (2011) Multicolor electrochromic polyaniline–WO3 hybrid thin films: one-pot molecular assembling synthesis. J Mater Chem 21:17316–17324

    CAS  Google Scholar 

  34. Yun TY, Li X, Bae J, Kim SH, Moon HC (2019) Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. Mater Design 162:45–51

    CAS  Google Scholar 

  35. Li K, Shao Y, Yan H, Lu Z, Griffith KJ, Yan J, Wang G, Fan H, Lu J, Huang W, Bao B, Liu X, Hou C, Zhang Z, Li Y, Yu J, Wang H (2018) Lattice-contraction triggered synchronous electrochromic actuator. Nat Commun 9:4798

    PubMed  PubMed Central  Google Scholar 

  36. Yun TG, Kim D, Kim YH, Park M, Hyun S, Han SM (2017) Photoresponsive smart coloration electrochromic supercapacitor. Adv Mater 29:1606728

    Google Scholar 

  37. Ma LJ, Li YX, Yu XF, Yang QB, Noh C-H (2009) Fabricating red–blue-switching dual polymer electrochromic devices using room temperature ionic liquid. Sol Energy Mater Sol Cells 93:564–570

    CAS  Google Scholar 

  38. Eren E, Alver C, Karaca GY, Uygun E, Oksuz L, Oksuz AU (2018) High-performance flexible complementary electrochromic device based on plasma modified WO3 nano hybrids and V2O5 nanofilm with low operation voltages. Electroanalysis 30:2099–2109

    CAS  Google Scholar 

  39. Karaca GY, Eren E, Cogal GC, Uygun E, Oksuz L, Oksuz AU (2019) Enhanced electrochromic characteristics induced by Au/PEDOT/Pt microtubes in WO3 based electrochromic devices. Opt Mater 88:472–478

    CAS  Google Scholar 

  40. Ling H, Liu L, Lee PS, Mandler D, Lu X (2015) Layer-by-layer assembly of PEDOT:PSS and WO3 nanoparticles: enhanced electrochromic coloration efficiency and mechanism studies by scanning electrochemical microscopy. Electrochim Acta 174:57–65

    CAS  Google Scholar 

  41. Wei H, Yan X, Wu S, Luo Z, Wei S, Guo Z (2012) Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage. J Phys Chem C 116:25052–25064

    CAS  Google Scholar 

  42. Najafi-Ashtiani H, Bahari A, Ghasemi S (2016) A dual electrochromic film based on nanocomposite of aniline and o-toluidine copolymer with tungsten oxide nanoparticles. Org Electron 37:213–221

    CAS  Google Scholar 

  43. Nunes M, Moura C, Hillman AR, Freire C (2017) Novel hybrid based on a poly[Ni(salen)] film and WO3 nanoparticles with electrochromic properties. Electrochim Acta 238:142–155

    CAS  Google Scholar 

  44. Dulgerbaki C, Oksuz AU (2014) Efficient electrochromic materials based on PEDOT/WO3 composites synthesized in ionic liquid media. Electroanalysis 26:2501–2512

    CAS  Google Scholar 

  45. Purkait T, Singh G, Kumar D, Singh M, Dey RS (2018) High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep 8:640

    PubMed  PubMed Central  Google Scholar 

  46. Raju V, Rains J, Gates C, Luo W, Wang X, Stickle WF, Stucky GD, Ji X (2014) Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett 14(7):4119–4124

    CAS  PubMed  Google Scholar 

  47. Li S, Li X, Li Y, Yan B, Song X, Li D (2017) Superior sodium storage of vanadium pentoxide cathode with controllable interlamellar spacing. Electrochim Acta 244:77–85

    CAS  Google Scholar 

  48. Jin H, Tian J, Wang S, Tan T, Xiaoab Y, Lia X (2014) Novel photochromic and electrochromic diarylethenes bearing triphenylamine units. RSC Adv 4:16839–16848

    CAS  Google Scholar 

  49. Zou B-X, Liang Y, Liu X-X, Diamond D, Lau K-T (2011) Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. J Power Sources 196:4842–4848

    CAS  Google Scholar 

  50. Mane AT, Navale ST, Sen S, Aswal DK, Gupta SK, Patil VB (2015) Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Org Electron 16:195–204

    CAS  Google Scholar 

  51. Fat’hi MR, Almasifar D (2017) Electrochemical sensor for square wave voltammetric determination of clozapine by glassy carbon electrode modified by WO3 nanoparticles. IEEE Sensors J 17:6069–6076

    Google Scholar 

Download references

Funding

The TUBITAK/COST (Project No: 114M877) provided financial support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysegul Uygun Oksuz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eren, E., Aydın, M.F. & Oksuz, A.U. A practical approach for generation of WO3-based flexible electrochromic devices. J Solid State Electrochem 24, 1057–1065 (2020). https://doi.org/10.1007/s10008-020-04588-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04588-0

Keywords

Navigation