Skip to main content
Log in

A Self-supporting, Surface Carbonized Filter Paper Membrane for Efficient Water-in-Oil Emulsion Separation

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Due to the important role of oil source in our life, the separation of water-in-oil emulsion is urgent and necessary. Membrane seperation technology has been an efficient and widely used method in separating oil-water separation. Herein, we report a versatile approach to fabricate surface carbonized membranes with self-standing property from biomass-derived precursor by synergistic charring of phytic acid, arginine and filter paper. The obtained membrane exhibited superhydrophobicity in oil, excellent fouling resistance, and self-supporting ability. The membrane can be cycle-used at least 12 times with high permeation flux (up to 1380 L·m−2·h−1) and separation efficiency (up to 99.4%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, B.; Liang, W. X.; Guo, Z. G.; Liu, W. M. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem. Soc. Rev. 2015, 44, 336–361.

    Article  Google Scholar 

  2. Zeng, X. J.; Qian, L.; Yuan, X. X.; Zhou, C. L.; Li, Z. W.; Cheng, J.; Xu, S. P.; Wang, S. F.; Pi, P. H.; Wen, X. F. Inspired by stenocara beetles: from water collection to high-efficiency water-in-oil emulsion separation. ACS Nano 2017, 11, 760–769.

    Article  CAS  Google Scholar 

  3. Masato, K.; Masahiro, G. Demulsification of water-in-oil emulsions by permeation through Shirasu-porous-glass (SPG) membranes. J. Membr. Sci. 2008, 322, 196–203.

    Article  Google Scholar 

  4. Lu, S.; Wang, Z. X.; Zhang, Y. L.; Jiang, Z. X.; Liu, Y. Y. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J. Membr. Sci. 2014, 461, 10–21.

    Article  Google Scholar 

  5. Wang, Y.; Hu, T. T.; Han, X. L.; Wang, Y. Q.; Li, J. D. Fabrication of Cu(OH)2 nanowires blended poly(vinylidene fluoride) ultrafiltration membranes for oil-water separation. Chinese J. Polym. Sci. 2018, 36, 612–619.

    Article  CAS  Google Scholar 

  6. Li, X. Y.; Hu, D.; Huang, K.; Yang, C. F. Hierarchical rough surfaces formed by LBL selfassembly for oil-water separation. J. Mater. Chem. A 2014, 2, 11830–11838.

    Article  CAS  Google Scholar 

  7. Zhang, W. F.; Liu, N.; Cao, Y. Z.; Lin, X.; Liu, Y. N.; Feng, L. Superwetting porous materials for wastewater treatment: from immiscible oil/water mixture to emulsion separation. Adv. Mater. Interfaces 2017, 4, 1700029.

    Google Scholar 

  8. Bader, S. A.; Ong, C. S. Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment. RSC Adv. 2017, 7, 20981–20994.

    Article  Google Scholar 

  9. Feng, S. Z.; Luo, W. X.; Wang, L. X.; Zhang, S.; Guo, N. N.; Xu, M. J.; Zhao, Z. B.; Jia, D. Z.; Wang, X. C.; Jia, L. X. Preparation and property of extremely stable superhydrophobic carbon fibers with core-shell structure. Carbon 2019, 150, 284–291.

    Article  CAS  Google Scholar 

  10. Ma, J. X.; Ping, D.; Dong, X. F. Recent developments of graphene oxide-based membranes: a review. Membranes 2017, 7, 52–80.

    Article  Google Scholar 

  11. Yue, X. J.; Zhang, T.; Yang, D. Y.; Qiu, F. X.; Li, Z. D. Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation. J. Clean. Prod. 2018, 199, 411–419.

    Article  CAS  Google Scholar 

  12. Gong, J.; Chen, X. C.; Tang, T. Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 2019, 94, 1–32.

    Article  CAS  Google Scholar 

  13. Chen, L.; Wang, Y. Z. A review on flame retardant technology in China. Part I: development of flame retardants. Polym. Adv. Technol. 2010, 21, 1–26.

    Article  Google Scholar 

  14. Shi, X. H.; Chen, L.; Liu, B. W.; Long, J. W.; Xu, Y. J.; Wang, Y. Z. Carbon fibers decorated by polyelectrolyte complexes toward their epoxy resin composites with high fire safety. Chinese J. Polym. Sci. 2018, 36, 1375–1384.

    Article  CAS  Google Scholar 

  15. Viola, H.; Eva, S.; Nadezda, S. Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. Am. J. Anal. Chem. 2018, 9, 303–310.

    Article  Google Scholar 

  16. Zhang, T.; Yan, H. Q.; Shen, L.; Fang, Z. P.; Zhang, X. M.; Wang, J. J.; Zhang, B. Y. Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene-vinyl acetate copolymer. Ind. Eng. Chem. Res. 2014, 53, 19199–19207.

    Article  CAS  Google Scholar 

  17. Valappil, S. P.; Ready, D.; Neel, E. A. A.; Pickup, D. M.; Chrzanowski, W.; O’Dell, L. A.; Newport, R. J.; Smith, M. E.; Wilson, M.; Knowles, J. C. Antimicrobial gallium-doped phosphate-based glasses. Adv. Funct. Mater. 2008, 18, 732–741.

    Article  CAS  Google Scholar 

  18. Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl. Energy 2013, 104, 801–809.

    Article  CAS  Google Scholar 

  19. Fackler, K.; Stevanic, J. S.; Ters, T.; Hinterstoisser, B.; Schwanninger, M.; Salmén, L. FTIR imaging spectroscopy to localise and characterise simultaneous and selective white-rot decay within sprude woodcell. Holzforschung 2011, 65, 411–420.

    Article  CAS  Google Scholar 

  20. Gao, Y. Y.; Deng, C.; Du, Y. Y.; Huang, S. C.; Wang, Y. Z. A novel bio-based flame retardant for polypropylene from phytic acid. Polym. Degrad. Stab. 2019, 298–308.

  21. Du, S. L.; Lin, X. B.; Jian, R. K.; Deng, C.; Wang, Y. Z. Flame-retardant wrapped ramie fibers towards suppressing “candlewick effect” of polypropylene/ramie fiber composites. Chinese J. Polym. Sci. 2015, 33, 84–94.

    Article  CAS  Google Scholar 

  22. Laufer, G.; Kirkland, C.; Cains, A. A.; Grunlan, J. C. Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl. Mater. Interfaces 2012, 4, 1643–1649.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21875147 and 51991351) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Chong Chen or Yu-Zhong Wang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, JYQ., Chen, SC., Zhang, J. et al. A Self-supporting, Surface Carbonized Filter Paper Membrane for Efficient Water-in-Oil Emulsion Separation. Chin J Polym Sci 39, 181–188 (2021). https://doi.org/10.1007/s10118-020-2492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2492-9

Keywords

Navigation