Skip to main content
Log in

High Open-circuit Voltage and Low Voltage Loss in All-polymer Solar Cell with a Poly(coronenediimide-vinylene) Acceptor

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Reducing the voltage loss (Vloss) is a critical factor in optimizing the open-circuit voltage (Voc) and overall power-conversion efficiency (PCE) of polymer solar cells. In the current work, by designing a novel electron-accepting unit of coronenediimide (CDI) and using it as the main functional building block, a new polymer acceptor CDI-V is developed and applied to fabricate all-polymer solar cells. Compared with the perylenediimide-based polymer acceptors we previously reported, the current CDI-V polymer possesses a noticeably elevated lowest unoccupied molecular orbital (LUMO). Thereby, by virtue of the enlarged energy gap between the donor HOMO and acceptor LUMO, a high Voc value of 1.05 V is achieved by the all-polymer photovolatic device, along with an impressively low Vloss of 0.55 V. As remarkably, in spite of an extremely small LUMO level offset of 0.01 eV exhibited by the donor and acceptor polymers, effective charge separation still takes place in the all-polymer device, as evidenced by a proper short-circuit current (Jsc) of 9.5 mA·cm2 and a decent PCE of 4.63%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev.2019, 119, 8028–8086.

    Article  CAS  Google Scholar 

  2. Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc. Chem. Res.2016, 49, 2424–2434.

    Article  CAS  Google Scholar 

  3. Genene, Z.; Mammo, W.; Wang, E.; Andersson, M. R. Recent advances in n-type polymers for all-polymer solar cells. Adv. Wafer.2019, 31, 1807275.

    Google Scholar 

  4. Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed.2019, 58, 4129–4142.

    Article  CAS  Google Scholar 

  5. Yang, J.; Xiao, B.; Tang, A.; Li, J.; Wang, X.; Zhou, E. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv. Mater.2018, 1804699.

    Google Scholar 

  6. Wang, Y.; Michinobu, T. Rational design strategies for electron-deficient semiconducting polymers in ambipolar/n-channel organic transistors and all-polymer solar cells. J. Mater. Chem. C2018, 6, 10390–10410.

    Article  CAS  Google Scholar 

  7. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science2018, 361, 1094–1098.

    Article  CAS  Google Scholar 

  8. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  9. Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat. Energy2018, 3, 422–427.

    Article  CAS  Google Scholar 

  10. Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem.2019, 62, 746–752.

    Article  CAS  Google Scholar 

  11. Yu, R.; Yao, H.; Cui, Y.; Hong, L.; He, C.; Hou, J. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Adv. Mater. 2019, 31, 1902302.

    Article  Google Scholar 

  12. Zhang, K.; Xia, R.; Fan, B.; Liu, X.; Wang, Z.; Dong, S.; Yip, H. L.; Ying, L.; Huang, F.; Cao, Y. 11.2% All-polymer tandem solar cells with simultaneously improved efficiency and stability. Adv. Mater.2018, 1803166.

    Google Scholar 

  13. Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Lai, J. Y. L.; Zou, Y.; Ade, H.; Yan, H. Efficient All-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett.2019, 4, 417–422.

    Article  CAS  Google Scholar 

  14. Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci.2019, 72, 157–163.

    Article  CAS  Google Scholar 

  15. Koine, N. B.; Tran, D. K.; Lee, H.; Kuzuhara, D.; Yoshimoto, N.; Koganezawa, T.; Jenekhe, S. A. New random copolymer acceptors enable additive-free processing of 10.1% efficient all-polymer solar cells with near-unity internal quantum efficiency. ACS Energy Lett.2019, 4, 1162–1170.

    Article  Google Scholar 

  16. Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z. G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem.2019, 62, 845–850.

    Article  CAS  Google Scholar 

  17. Zhou, Y.; Kurosawa, T.; Ma, W.; Guo, Y.; Fang, L.; Vandewal, K.; Diao, Y.; Wang, C.; Yan, Q.; Reinspach, J.; Mei, J.; Appleton, A. L.; Koleilat, G. I.; Gao, Y.; Mannsfeld, S. C.; Salleo, A.; Ade, H.; Zhao, D.; Bao, Z. High performance all-polymer solar cell via polymer side-chain engineering. Adv. Mater.2014, 26, 3767–3772.

    Article  CAS  Google Scholar 

  18. Guo, Y.; Li, Y.; Han, H.; Yan, H.; Zhao, D. All-polymer solar cells with perylenediimide polymer acceptors. Chinese J. Polym. Sci.2017, 35, 293–301.

    Article  CAS  Google Scholar 

  19. Guo, Y.; Li, Y.; Awartani, O.; Zhao, J.; Han, H.; Ade, H.; Zhao, D.; Yan, H. A Vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions. Adv. Mater.2016, 28, 8483–8489.

    Article  CAS  Google Scholar 

  20. Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; Yan, H.; Zhao, D. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater.2017, 29, 1700309.

    Article  Google Scholar 

  21. Chen, H.; Guo, Y.; Chao, P.; Liu, L.; Chen, W.; Zhao, D.; He, F. A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Sci. China Chem.2018, 62, 238–244.

    Article  Google Scholar 

  22. Schubert, M.; Dolfen, D.; Frisch, J.; Roland, S.; Steyrleuthner, R.; Stiller, B.; Chen, Z.; Scherf, U.; Koch, N.; Facchetti, A.; Neher, D. Influence of aggregation on the performance of all-polymer solar cells containing low-bandgap naphthalenediimide copolymers. Adv. Energy Mater.2012, 2, 369–380.

    Article  CAS  Google Scholar 

  23. Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater.2016, 28, 1884–1890.

    Article  CAS  Google Scholar 

  24. Mori, D.; Benten, H.; Okada, L.; Ohkita, H.; Ito, S. Low-bandgap donor/acceptor polymer blend solar cells with efficiency exceeding 4%. Adv. Energy Mater.2014, 4, 1301006.

    Article  Google Scholar 

  25. Veldman, D.; Meskers, S. C. J.; Janssen, R. A. J. The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv. Fund. Mater.2009, 19, 1939–1948.

    Article  CAS  Google Scholar 

  26. Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy2016, 1, 16089–16095.

    Article  CAS  Google Scholar 

  27. Chen, S.; Liu, Y.; Zhang, L.; Chow, P. C. Y.; Wang, Z.; Zhang, G.; Ma, W.; Yan, H. A wide-bandgap donor polymer for highly efficient non-fullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc.2017, 139, 6298–6301.

    Article  CAS  Google Scholar 

  28. Cheng, P.; Zhang, M.; Lau, T. K.; Wu, Y.; Jia, B.; Wang, J.; Yan, C.; Qin, M.; Lu, X.; Zhan, X. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 V and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv. Mater.2017, 29, 1605216.

    Article  Google Scholar 

  29. Fei, Z.; Eisner, F. D.; Jiao, X.; Azzouzi, M.; Rohr, J. A.; Han, Y.; Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.; Anthopoulos, T. D.; Nelson, J.; Heeney, M. An alkylated indacenodithieno[3,2-[b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with lowvoltage losses. Adv. Mater.2018, 30, 1705209.

    Article  Google Scholar 

  30. Sun, H.; Tang, Y.; Koh, C. W.; Ling, S.; Wang, R.; Yang, K.; Yu, J.; Shi, Y.; Wang, Y.; Woo, H. Y.; Guo, X. High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene., Adv. Wafer.2019, 31, 1807220.

    Google Scholar 

  31. Ding, Z.; Long, X.; Meng, B.; Bai, K.; Dou, C.; Liu, J.; Wang, L. Polymer solar cells with open-circuit voltage of 1.3 V using polymer electron acceptor with high LUMO level. Nano Energy2017, 32, 216–224.

    Article  CAS  Google Scholar 

  32. Liu, T.; Ge, Y.; Sun, B.; Fowler, B.; Li, H.; Nuckolls, C.; Xiao, S. Synthesis, regioselective bromination, and functionalization of coronene tetracarboxydiimide. J. Org. Chem.2019, 84, 2713–2720.

    Article  CAS  Google Scholar 

  33. Nolde, F.; Pisula, W.; Muller, S.; Kohl, C.; Mullen, K. Synthesis and self-organization of core-extended perylene tetracarboxdiimides with branched alkyl substituents. Chem. Mater.2006, 18, 3715–3725.

    Article  CAS  Google Scholar 

  34. An, Z.; Yu, J.; Domercq, B.; Jones, S. C.; Barlow, S.; Kippelen, B.; Marder, S. R. Room-temperature discotic liquid-crystalline coronene diimides exhibiting high charge-carrier mobility in air. J. Mater. Chem.2009, 19, 6688–6698.

    Article  CAS  Google Scholar 

  35. Zhang, C.; Shi, K.; Cai, K.; Xie, J.; Lei, T.; Yan, Q.; Wang, J. Y.; Pei, J.; Zhao, D. Cyano- and chloro-substituted coronene diimides as solution-processable electron-transporting semiconductors. Chem. Commun.2015, 51, 7144–7147.

    Article  CAS  Google Scholar 

  36. Zhu, Z.; Xu, J. Q.; Chueh, C. C.; Liu, H.; Li, Z.; Li, X.; Chen, H.; Jen, A. K. A low-temperature, solution-processable organic electron-transporting layer based on planar coronene for high-performance conventional perovskite solar cells. Adv. Mater.2016, 28, 10786–10793.

    Article  CAS  Google Scholar 

  37. Yu, J.; Xi, Y.; Chueh, C. C.; Xu, J. Q.; Zhong, H.; Lin, F.; Jo, S. B.; Pozzo, L. D.; Tang, W.; Jen, A. K. Y. Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer. Nano Energy2017, 39, 454–460.

    Article  CAS  Google Scholar 

  38. Yan, Q.; Cai, K.; Zhang, C.; Zhao, D. Coronenediimides synthesized via ICI-induced cyclization of diethynyl perylenediimides. Org. Lett.2012, 14, 4654–4657.

    Article  CAS  Google Scholar 

  39. Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater.2013, 25, 4766–4771.

    Article  CAS  Google Scholar 

  40. Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Ma, W.; Yartsev, A.; Inganas, O.; Andersson, M. R.; Janssen, R. A.; Wang, E. High performance all-polymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing. J. Am. Chem. Soc.2016, 138, 10935–10944.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21674001, 21925501, and 21790363) and the High-performance Computing Platform of Peking University for the computational resources. This work was also partially supported by the Hong Kong Research Grants Council (Nos. T23-407/13 N,N_HKUST623/13, 16305915, 16322416, and 606012), HKJEBN Limited, HKUST president's office (No. FP201), and Hong Kong Innovation and Technology Commission (Nos. ITCCNERC14SC01 and ITS/083/15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Yan or Da-Hui Zhao.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Bai, FJ., Wei, R. et al. High Open-circuit Voltage and Low Voltage Loss in All-polymer Solar Cell with a Poly(coronenediimide-vinylene) Acceptor. Chin J Polym Sci 38, 1157–1163 (2020). https://doi.org/10.1007/s10118-020-2426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2426-6

Keywords

Navigation