Skip to main content
Log in

Mechanism-inspired Design of Heterodinuclear Catalysts for Copolymerization of Epoxide and Lactone

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyesters, as a class of high-performance and versatile polymer materials, often suffer from some drawbacks, such as hydrophobicity and brittleness due to their single structure nature. Thus, modifications have attracted much attention for enhancing their desirable properties, of which one efficient way is incorporating the aliphatic polyether segment into the main chain of the polyester. However, this approach is of much challenge because the obtained polyesters are problematic in either low alternating degree or low molecular weight. Herein, we describe an efficient strategy to incorporate polyether fragment into polyester by developing a novel Co-AI based heterodinuclear complex for mediating the copolymerization of propylene oxide (PO) with ε-caprolactone (CL). The tracking experiments reveal that PO and CL convert into the polymer chain throughout the polymerization process. Especially, the linear increase in the molecular weight with conversion of CL indicates the controllable nature of the copolymerization. The competition polymerization, offering the monomer reactivity ratios of rCL = 0.96 and rPO = 1.04, suggests that the tendency of self-propagation or incorporation of monomers is nearly identical. Interestingly, the obtained polymers with different ether contents exhibit tunable thermal properties with enhanced decomposition temperature for the polymer with higher ether content. The newly developed heterodinuclear complex for new polymerization provides an idea to synthesize new functional polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kutikov, A. B.; Song, J. Biodegradable PEG-based amphophilic block copolymers for tissue engineering applications. ACS Biomater. Sci. Eng.2015, 1, 463–480.

    Article  CAS  Google Scholar 

  2. Xia, Y. N.; Zhao, J. P. Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. Polymer2018, 743, 343–361.

    Article  Google Scholar 

  3. Wang, B. T.; Zhang, Y.; Guo, Z. H.; Cheng, J.; Fang, Z. H. Biodegradable aliphatic/aromatic copoly(ester-ether)s: the effect of polyfethylene glycol) on physical properties and degradation behavior. J. Polym. Res.2011, 18, 187–196.

    Article  Google Scholar 

  4. Webb, M. A.; Jung, Y.; Pesko, D. M.; Savoie, B. M.; Yamamoto, U.; Goates, G. W.; Balsara, N. P.; Wang, Z. G.; Miller, T. F. Systematic computational and experimental investigation of lithium-Ion transport mechanisms in polyester-based polymer electrolytess. ACS Cent. Sci.2015, 7, 198–205.

    Article  Google Scholar 

  5. Liu, Y. Y.; Wang, X. J.; Li, Z.; Wei, F. L.; Zhu, H.; Dong, H.; Chen, S. M.; Sun, H. R.; Yang, K.; Guo, K. A switch from anionic to bifunctional H-bonding catalyzed ring-opening polymerizations towards polyether-polyester diblock copolymers. Polym. Chem.2018, 9, 154–159.

    Article  CAS  Google Scholar 

  6. Li, H.; Luo, H. T.; Zhao, J. P.; Zhang, G. Z. Sequence-selective terpolymerization from monomer mixtures using a simple organocatalyst. ACS Macro Lett.2018, 7, 1420–1425.

    Article  CAS  Google Scholar 

  7. Romain, C.; Zhu, Y. Q.; Dingwall, P.; Paul, S.; Rzepa, H. S.; Buchard, A.; Williams, C. K. Chemoselective polymerizations from mixtures of epoxide, lactone, anhydride, and carbon dioxide. J. Am. Chem. Soc.2016, 738, 4120–4131.

    Article  Google Scholar 

  8. Qi, M.; Dong, Q.; Wang, D. W.; Byers, J. A. Electrochemically switchable ring-opening polymerization of lactide and cyclohexene oxide. J.Am. Chem. Soc.2018, 740, 5686–5690.

    Article  Google Scholar 

  9. Hu, C. Y.; Duan, R. L.; Yang, S. C.; Pang, X.; Chen, X. S. CO2 controlled catalysis: switchable homopolymerization and copolymerization. Macromolecules2018, 57, 4699–4704.

    Article  Google Scholar 

  10. Quan, S. M.; Wang, X. K.; Zhang, R.; Diaconescu, P. L. Redox Switchable copolymerization of cyclic esters and epoxides by a Zirconium complex. Macromolecules2016, 49, 6768–6778.

    Article  CAS  Google Scholar 

  11. Zhao, J. P.; Pahovnik, D.; Gnanou, Y.; Hadjichristidis, N. Sequential polymerization of ethylene oxide, ε-caprolactone and L-lactide: a one-pot metal-free route to tri- and pentablock terpolymers. Polym. Chem.2014, 5, 3750–3753.

    Article  CAS  Google Scholar 

  12. Isnard, F.; Carratü, M.; Lamberti, M.; Venditto, V.; Mazzeo, M. Copolymerization of cyclic esters, epoxides and anhydrides: evidence of the dual role of the monomers in the reaction mixture. Catal. Sci. Technol.2018, 8, 5034–5043.

    Article  CAS  Google Scholar 

  13. Yuan, H.; Bin, J.; Pan, L.; Li, Y. S. One-step access to sequence-controlled block copolymers by self-switchable organocatalytic multicomponent polymerization. Angew. Chem. Int. Ed.2018, 57, 16888–16892.

    Article  Google Scholar 

  14. Liu, S.; Bai, T. W.; Ni, K.; Chen, Y.; Zhao, J. P.; Ling, J.; Ye, X. D.; Zhang, G. Z. Biased Lewis pairs: a general catalytic approach to ether-ester block copolymers with unlimited ordering of sequences. Angew. Chem. Int. Ed.2019, 58, 15478–15487.

    Article  CAS  Google Scholar 

  15. Li, H.; He, G. C.; Chen, Y.; Zhao, J. P.; Zhang, G. Z. One-step approach to polyester-polyether block copolymers using highly tunable bicomponent catalyst. ACS Macro Lett.2019, 8, 973–978.

    Article  CAS  Google Scholar 

  16. Huang, H. C.; Li, Z. J.; Wang, B.; Chen, X.; Li, Y. S. Synthesis of lactide ε-caprolactone quasi-random copolymer by using rationally designed mononuclear aluminum complexes with modified β-ketiminato ligand. J. Polym., Sci., Part A: Polym. Chem.2018, 56, 203–212.

    Article  CAS  Google Scholar 

  17. Han, B.; Liu, B. Y.; Ding, H. N.; Duan, Z. Y.; Wang, X. H.; Theato, P. CO2-tuned sequential synthesis of stereoblock copolymers comprising a stereoregularity-adjustable polyester block and an atactic CO2-based polycarbonate block. Macromolecules2017, 50, 9207–9215.

    Article  CAS  Google Scholar 

  18. Chen, X. H.; McCarthy, S. P.; Gross, R. A. Synthesis and characterization of [L]-lactide-ethylene oxide multiblock copolymers. Macromolecules1997, 30, 4295–4301.

    Article  CAS  Google Scholar 

  19. Xu, J. B.; Yang, J. X.; Ye, X. D.; Ma, C. F.; Zhang, G. Z.; Pispas, S. Synthesis and properties of amphiphilic and biodegradable poly(ε-caprolactone-co-glycidol) copolymers. J. Polym. Sci., Part A: Polym. Chem.2015, 53, 846–853.

    Article  CAS  Google Scholar 

  20. Hu, S. Y.; Zhao, J. P.; Zhang, G. Z. Noncopolymerization approach to copolymers via concurrent transesterification and ring-opening reactions. ACS Macro Lett.2016, 5, 40–44.

    Article  Google Scholar 

  21. Chwatko, M.; Lynd, N. A. Statistical copolymerization of epoxides and lactones to high molecular weight. Macromolecules2017, 50, 2714–2723.

    Article  CAS  Google Scholar 

  22. dayman, N. E.; Morris, L. S.; LaPointe, A. M.; Keresztes, I.; Waymouth, R. M.; Coates, G. W. Dual catalysis for the copolymerisation of epoxides and lactones. Chem. Commun.2019, 55, 6914–6917.

    Article  Google Scholar 

  23. Darensbourg, D. J.; Chung, W. C. Relative basicities of cyclic ethers and esters chemistry of importance to ring-opening co-and terpolymerization reactions. Polyhedron.2013, 58, 139–143.

    Article  CAS  Google Scholar 

  24. Lu, X. B.; Ren, W. M.; Wu, G. P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res.2012, 45, 1721–1735.

    Article  CAS  Google Scholar 

  25. Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem. Rev.2016, 116, 2170–2243.

    Article  CAS  Google Scholar 

  26. Sarazin, Y.; Carpentier, J. F. Discrete cationic complexes for ring-opening polymerization catalysis of cyclic esters and epoxides. Chem. Rev.2015, 115, 3564–3614.

    Article  CAS  Google Scholar 

  27. Ruan, J. M.; Xiao, A. G.; Wu, H. W.; Yang H. L. Review-recent development of ring-opening polymerization of cyclic esters using aluminum complexes. Des. Monomers Polym.2013, 17, 345–355.

    Google Scholar 

  28. Thomas, C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 2010, 39, 165–173.

    Article  CAS  Google Scholar 

  29. Wu, J. C.; Yu, T. L.; Chen, C. T.; Lin, C. C. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord. Chem. Rev.2006, 250, 602–626.

    Article  CAS  Google Scholar 

  30. Ajellal, N.; Carpentier, J. F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazina Y.; Trifonov, A. Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans.2010, 39, 8363–8376.

    Article  CAS  Google Scholar 

  31. Labet, M.; Thielemans, W. Synthesis of polycaprolactone: a review. Chem. Soc. Rev.2009, 38, 3484–3504.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21722402 and 21674015), and the Fundamental Research Funds for the Central Universities (No. DUT18ZD105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Min Ren.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, WM., Wang, RJ., Ren, BH. et al. Mechanism-inspired Design of Heterodinuclear Catalysts for Copolymerization of Epoxide and Lactone. Chin J Polym Sci 38, 950–957 (2020). https://doi.org/10.1007/s10118-020-2413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2413-y

Keywords

Navigation