Skip to main content

Advertisement

Log in

An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The wearable demand of modern electronic devices makes flexible and stretchable energy storage device urgently needed. Stretchable and flexible supercapacitors (SCs) are energy storage devices that provide ultrahigh power density while having long-term durability, high security, and electrochemical stability. Among different SCs electrode materials, CNTs and graphene-based materials exhibit great potential in terms of stretchable SCs due to its ultrahigh electrical conductivity, large specific surface area and good mechanical properties. In this review, the state-of-the-art process and achievements in the field of stretchable SCs enabled by CNTs and graphene are presented, which include the novel design strategy, mechanical and electrochemical properties. The final section highlights current challenges and future perspectives on research in this thriving field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science2016, 351, 1071–1074.

    CAS  PubMed  Google Scholar 

  2. Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y. C.; Chortos, A.; Lissel, F.; Wang, G. J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C.; Gu, X.; Bae, W. G.; Kim, Y.; Jin, L.; Chung, J. W.; Tok, J. B. H.; Bao, Z. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature2016, 539, 411.

    CAS  PubMed  Google Scholar 

  3. Gong, S.; Cheng, W. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater.2017, 7, 1700648.

    Google Scholar 

  4. Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. Flexible active-matrix electronic ink display. Nature2003, 423, 136–136.

    CAS  PubMed  Google Scholar 

  5. Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y.; Han, X.; Wu, T.; Hu, W.; Lu, J. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater.2017, 7, 1700779.

    Google Scholar 

  6. Cho, J.; Kim, Y.-W.; Kim, B.; Lee, J. G.; Park, B. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AIPO4 nanoparticles. Angew. Chem. Int. Ed.2013, 42, 1618–1621.

    Google Scholar 

  7. Fang, H. T.; Liu, M.; Wang, D. W.; Ren, X. H.; Sun, X. Fabrication and supercapacitive properties of a thick electrode of carbon nanotube-RuO2 core-shell hybrid material with a high RuO2 loading. Nano Energy2013, 2, 1232–1241.

    CAS  Google Scholar 

  8. Hu, L.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano2010, 4, 5843–5848.

    CAS  PubMed  Google Scholar 

  9. Choi, K. H.; Cho, S. J.; Kim, S. H.; Kwon, Y. H.; Kim, J. Y.; Lee, S. Y. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Energy Mater.2014, 24, 44–52.

    CAS  Google Scholar 

  10. Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol.2011, 6, 232.

    CAS  PubMed  Google Scholar 

  11. Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol.2010, 5, 651.

    CAS  PubMed  Google Scholar 

  12. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol.2015, 10, 313.

    CAS  PubMed  Google Scholar 

  13. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science2014, 343, 1210–1211.

    CAS  PubMed  Google Scholar 

  14. Ji, H.; Zhao, X.; Qiao, Z.; Jung, J.; Zhu, Y.; Lu, Y.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun.2014, 5, 3317.

    PubMed  Google Scholar 

  15. Wei, L.; Yushin, G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy2012, 1, 552–565.

    CAS  Google Scholar 

  16. Zhai, T.; Wan, L.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater.2017, 29, 1604167.

    Google Scholar 

  17. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous a-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater.2010, 9, 146.

    CAS  PubMed  Google Scholar 

  18. Thangavel, R.; Kaliyappan, K.; Kang, K.; Sun, X.; Lee, Y. S. Going beyond lithium hybrid capacitors: proposing a new high-performing sodium hybrid capacitor system for next-generation hybrid vehicles made with bio-inspired activated carbon. Adv. Energy Mater.2016, 6, 1502199.

    Google Scholar 

  19. Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci.2016, 9, 102–106.

    CAS  Google Scholar 

  20. Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater.2016, 28, 3646–3652.

    CAS  PubMed  Google Scholar 

  21. Xu, J.; Tan, Z.; Zeng, W.; Chen, G.; Wu, S.; Zhao, Y.; Ni, K.; Tao, Z.; Ikram, M.; Ji, H.; Zhu, Y. A hierarchical carbon derived from sponge-templated activation of graphene oxide for highperformance supercapacitor electrodes. Adv. Mater.2016, 28, 5222–5228.

    CAS  PubMed  Google Scholar 

  22. Sui, Z. Y.; Meng, Y. N.; Xiao, P. W.; Zhao, Z. Q.; Wei, Z. X.; Han, B. H. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl. Mater. Interfaces2015, 7, 1431–1438.

    CAS  PubMed  Google Scholar 

  23. Zhu, J.; Childress, A. S.; Karakaya, M.; Dandeliya, S.; Srivastava, A.; Lin, Y.; Rao, A. M.; Podila, R. Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices. Adv. Mater.2016, 28, 7185–7192.

    CAS  PubMed  Google Scholar 

  24. Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater.2018, 30, 1704449.

    Google Scholar 

  25. An, K. H.; Kim, W. S.; Park, Y. S.; Choi, Y. C.; Lee, S. M.; Chung, D. C.; Bae, D. J.; Lim, S. C.; Lee, Y. H. Supercapacitors using singlewalled carbon nanotube electrodes. Adv. Mater.2001, 13, 497–500.

    CAS  Google Scholar 

  26. Hu, S.; Rajamani, R.; Yu, X. Flexible solid-state paper-based carbon nanotube supercapacitor. Appl. Phys. Lett.2012, 100, 104103.

    Google Scholar 

  27. Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett.2009, 9, 1872–1876.

    CAS  PubMed  Google Scholar 

  28. Yu, J.; Lu, W.; Pei, S.; Gong, K.; Wang, L.; Meng, L.; Huang, Y.; Smith, J. P.; Booksh, K. S.; Li, Q.; Byun, J. H.; Oh, Y.; Yan, Y.; Chou, T. W. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano2016, 10, 5204–5211.

    CAS  PubMed  Google Scholar 

  29. Zhao, M. Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C.; van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater.2015, 27, 339–345.

    CAS  PubMed  Google Scholar 

  30. Redondo, E.; Carretero-González, J.; Goikolea, E.; Ségalini, J.; Mysyk, R. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim. Acta2015, 160, 178–184.

    CAS  Google Scholar 

  31. Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors. Adv. Energy Mater.2016, 6, 1600802.

    Google Scholar 

  32. Hwang, J. Y.; Li, M.; El-Kady, M. F.; Kaner, R. B. Next-generation activated carbon supercapacitors: a simple step in electrode processing leads to remarkable gains in energy density. Adv. Funct. Mater.2017, 27, 1605745.

    Google Scholar 

  33. Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater.2009, 19, 438–447.

    CAS  Google Scholar 

  34. Jiang, H.; Ma, J.; Li, C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater.2012, 24, 4197–4202.

    CAS  PubMed  Google Scholar 

  35. Lin, T.; Chen, I. W.; Liu, F.; Yang, C.; Bi, H.; Xu, F.; Huang, F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science2015, 350, 1508–1513.

    CAS  PubMed  Google Scholar 

  36. Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater.2008, 20, 7195–7200.

    CAS  Google Scholar 

  37. Li, W.; Zhang, F.; Dou, Y.; Wu, Z.; Liu, H.; Qian, X.; Gu, D.; Xia, Y.; Tu, B.; Zhao, D. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater.2011, 1, 382–386.

    CAS  Google Scholar 

  38. Wang, J. G.; Liu, H.; Sun, H.; Hua, W.; Wang, H.; Liu, X.; Wei, B. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon2018, 127, 85–92.

    CAS  Google Scholar 

  39. Su, H.; Huang, H.; Zhang, H.; Chu, X.; Zhang, B.; Gu, B.; Zheng, X.; Wu, S.; He, W.; Yan, C.; Chen, J.; Yang, W. In situ direct method to massively prepare hydrophilic porous carbide-derived carbons for high-performance supercapacitors. ACS Appl. Energy Mater.2018, 1, 3544–3553.

    CAS  Google Scholar 

  40. John, C.; Celine, L.; Pierre-Louis, T.; Patrice, S.; Yury, G. Monolithic carbide-derived carbon films for micro-supercapacitors. Science2010, 328, 480–483.

    Google Scholar 

  41. Lu, Q.; Chen, J. G.; Xiao, J. Q. Nanostructured electrodes for highperformance pseudocapacitors. Angew. Chem. Int. Ed.2013, 52, 1882–1889.

    CAS  Google Scholar 

  42. Liu, Y.; Zhou, J.; Tang, J.; Tang, W. Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors. Chem. Mater.2015, 27, 7034–7041.

    CAS  Google Scholar 

  43. Kashani, H.; Chen, L.; Ito, Y.; Han, J.; Hirata, A.; Chen, M. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy2016, 19, 391–400.

    CAS  Google Scholar 

  44. Alves, A. P. P.; Koizumi, R.; Samanta, A.; Machado, L. D.; Singh, A. K.; Galvao, D. S.; Silva, G. G.; Tiwary, C. S.; Ajayan, P. M. One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance. Nano Energy2017, 31, 225–232.

    CAS  Google Scholar 

  45. Zhu, J.; Feng, T.; Du, X.; Wang, J.; Hu, J.; Wei, L. High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets. J. Power Sources2017, 346, 120–127.

    CAS  Google Scholar 

  46. Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater.2010, 22, 1392–1401.

    CAS  Google Scholar 

  47. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano2010, 4, 1963–1970.

    CAS  PubMed  Google Scholar 

  48. Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources2010, 195, 3041–3045.

    CAS  Google Scholar 

  49. Wang, Y.; Yang, X.; Pandolfo, A.G.; Ding, J.; Li, D. High-rate and high-volumetric capacitance of compact graphene-polyaniline hydrogel electrodes. Adv. Energy Mater.2016, 6, 1600185.

    Google Scholar 

  50. Liu, Y.; Weng, B.; Razal, J. M.; Xu, Q.; Zhao, C.; Hou, Y.; Seyedin, S.; Jalili, R.; Wallace, G. G.; Chen, J. High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films. Sci. Rep.2015, 5, 17045.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cho, S.; Kim, M.; Jang, J. Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl. Mater. Interfaces2015, 7, 10213–10227.

    CAS  PubMed  Google Scholar 

  52. Zhang, Q.; Wang, X.; Pan, Z.; Sun, J.; Zhao, J.; Zhang, J.; Zhang, C.; Tang, L.; Luo, J.; Song, B.; Zhang, Z.; Lu, W.; Li, Q.; Zhang, Y.; Yao, Y. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett.2017, 17, 2719–2726.

    CAS  PubMed  Google Scholar 

  53. Zhao, D.; Zhang, Q.; Chen, W.; Yi, X.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Li, X.; Yu, H. Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl. Mater. Interfaces2017, 9, 13213–13222.

    CAS  PubMed  Google Scholar 

  54. Ye, J. S.; Cui, H. F.; Liu, X.; Lim, T. M.; Zhang, W. D.; Sheu, F. S. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small2005, 1, 560–565.

    CAS  PubMed  Google Scholar 

  55. Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M. Anchoring hydrous RuO2 on graphene sheets for highperformance electrochemical capacitors. Adv. Funct. Mater.2010, 20, 3595–3602.

    CAS  Google Scholar 

  56. Hwang, J. Y.; El-Kady, M. F.; Wang, Y.; Wang, L.; Shao, Y.; Marsh, K.; Ko, J. M.; Kaner, R. B. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for highperformance capacitive energy storage. Nano Energy2015, 18, 57–70.

    CAS  Google Scholar 

  57. Sheng, L.; Jiang, L.; Wei, T.; Fan, Z. High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene-MnO2 electrodes with densely stacked architectures. Small2016, 12, 5217–5227.

    CAS  PubMed  Google Scholar 

  58. Jia, H.; Cai, Y.; Lin, J.; Liang, H.; Qi, J.; Cao, J.; Feng, J.; Fei, W. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv. Sci.2018, 5, 1700887.

    Google Scholar 

  59. Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater.2011, 21, 2366–2375.

    CAS  Google Scholar 

  60. Xia, X. H.; Tu, J. P.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem. Commun.2011, 47, 5786–5788.

    CAS  Google Scholar 

  61. Yang, L.; Cheng, S.; Ding, Y.; Zhu, X.; Wang, Z. L.; Liu, M. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett.2012, 12, 321–325.

    CAS  PubMed  Google Scholar 

  62. Su, F.; Lv, X.; Miao, M. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small2015, 11, 854–861.

    CAS  PubMed  Google Scholar 

  63. Lin, J.; Jia, H.; Liang, H.; Chen, S.; Cai, Y.; Qi, J.; Qu, C.; Cao, J.; Fei, W.; Feng, J. In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for high-performance supercapacitors. Adv. Sci.2018, 5, 1700687.

    Google Scholar 

  64. Zhao, B.; Song, J.; Liu, P.; Xu, W.; Fang, T.; Jiao, Z.; Zhang, H.; Jiang, Y. Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J. Mater. Chem.2011, 21, 18792–18798.

    CAS  Google Scholar 

  65. Bai, Y.; Du, M.; Chang, J.; Sun, J.; Gao, L. Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes. J. Mater. Chem.2014, 2, 3834–3840.

    CAS  Google Scholar 

  66. Oliveira, A. H. P.; Oliveira, H. P. Carbon nanotube/polypyrrole nanofibers core-shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes. J. Power Sources2014, 268, 45–49.

    Google Scholar 

  67. Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater.2013, 3, 1500–1506.

    CAS  Google Scholar 

  68. Zhang, Z.; Xiao, F.; Guo, Y.; Wang, S.; Liu, Y. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces2013, 5, 2227–2233.

    CAS  PubMed  Google Scholar 

  69. Wang, H.; Yi, H.; Chen, X.; Wang, X. One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J. Mater. Chem. A2014, 2, 1165–1173.

    CAS  Google Scholar 

  70. Lee, M.; Wee, B. H.; Hong, J. D. High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide. Adv. Energy Mater.2015, 5, 1401890.

    Google Scholar 

  71. Perera, S. D.; Patel, B.; Nijem, N.; Roodenko, K.; Seitz, O.; Ferraris, J. P.; Chabal, Y. J.; Balkus Jr., K. J. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors. Adv. Energy Mater.2011, 1, 936–945.

    CAS  Google Scholar 

  72. Zhang, L. L.; Zhao, X. S. Carbon-based materials as super-capacitor electrodes. Chem. Soc. Rev.2009, 38, 2520–2531.

    CAS  PubMed  Google Scholar 

  73. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett.2010, 10, 4863–4868.

    CAS  PubMed  Google Scholar 

  74. Sun, X.; Sun, H.; Li, H.; Peng, H. Developing polymer composite materials: carbon nanotubes or graphene? Adv. Mater.2013, 25, 5153–5176.

    CAS  PubMed  Google Scholar 

  75. Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon2019, 141, 467–480.

    CAS  Google Scholar 

  76. Xu, P.; Gu, T.; Cao, Z.; Wei, B.; Yu, J.; Li, F.; Byun, J. H.; Lu, W.; Li, Q.; Chou, T. W. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater.2014, 4, 1300759.

    Google Scholar 

  77. Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed.2013, 52, 13453–13457.

    CAS  Google Scholar 

  78. Chen, T.; Hao, R.; Peng, H.; Dai, L. High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem. Int. Ed.2015, 54, 618–622.

    CAS  Google Scholar 

  79. Choi, C.; Kim, S. H.; Sim, H. J.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Spinks, G. M.; Baughman, R. H.; Kim, S. J. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solidstate supercapacitors. Sci. Rep.2015, 5, 9387.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Y.; Bai, W.; Cheng, X.; Ren, J.; Weng, W.; Chen, P.; Fang, X.; Zhang, Z.; Peng, H. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed.2014, 53, 14564–14568.

    CAS  Google Scholar 

  81. Shang, Y.; Wang, C.; He, X.; Li, J.; Peng, Q.; Shi, E.; Wang, R.; Du, S.; Cao, A.; Li, Y. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy2015, 12, 401–409.

    CAS  Google Scholar 

  82. Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.; Pei, Z.; Wang, Z.; Xue, Q.; Xie, X.; Zhi, C. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun.2015, 6, 10310.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun, J.; Huang, Y.; Fu, C.; Wang, Z.; Huang, Y.; Zhu, M.; Zhi, C.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy2016, 27, 230–237.

    CAS  Google Scholar 

  84. Yu, C.; Masarapu, C.; Rong, J.; Wei, B.; Jiang, H. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater.2009, 21, 4793–4797.

    CAS  PubMed  Google Scholar 

  85. Gu, T.; Wei, B. Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors. Nanoscale2015, 7, 11626–11632.

    CAS  PubMed  Google Scholar 

  86. Tang, Q.; Chen, M.; Yang, C.; Wang, W.; Bao, H.; Wang, G. Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl. Mater. Interfaces2015, 7, 15303–15313.

    CAS  PubMed  Google Scholar 

  87. Gu, T.; Wei, B. High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO2/CNT and Fe2O3/CNT macrofilms. J. Mater. Chem. A2016, 4, 12289–12295.

    CAS  Google Scholar 

  88. Lv, T.; Yao, Y.; Li, N.; Chen, T. Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew. Chem. Int. Ed.2016, 55, 9191–9195.

    CAS  Google Scholar 

  89. Zhang, Z.; Wang, L.; Li, Y.; Wang, Y.; Zhang, J.; Guan, G.; Pan, Z.; Zheng, G.; Peng, H. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv. Energy Mater.2017, 7, 1601814.

    Google Scholar 

  90. Cao, C.; Zhou, Y.; Ubnoske, S.; Zang, J.; Cao, Y.; Henry, P.; Parker, C. B.; Glass, J. T. Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater.2019, 9, 1900618.

    Google Scholar 

  91. He, S.; Cao, J.; Xie, S.; Deng, J.; Gao, Q.; Qiu, L.; Zhang, J.; Wang, L.; Hu, Y.; Peng, H. Stretchable supercapacitor based on a cellular structure. J. Mater Chem. A2016, 4, 10124–10129.

    CAS  Google Scholar 

  92. He, S.; Qiu, L.; Wang, L.; Cao, J.; Xie, S.; Gao, Q.; Zhang, Z.; Zhang, J.; Wang, B.; Peng, H. A three-dimensionally stretchable highperformance supercapacitor. J. Mater. Chem. A2016, 4, 14968–14973.

    CAS  Google Scholar 

  93. Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol.2008, 3, 206–209.

    CAS  PubMed  Google Scholar 

  94. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett.2008, 8, 902–907.

    CAS  PubMed  Google Scholar 

  95. Zang, J.; Cao, C.; Feng, Y.; Liu, J.; Zhao, X. Stretchable and highperformance supercapacitors with crumpled graphene papers. Sci. Rep.2014, 4, 6492.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, T.; Xue, Y.; Roy, A. K.; Dai, L. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano2014, 8, 1039–1046.

    CAS  PubMed  Google Scholar 

  97. Xu, P.; Kang, J.; Choi, J. B.; Suhr, J.; Yu, J.; Li, F.; Byun, J. H.; Kim, B. S.; Chou, T. W. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano2014, 8, 9437–9445.

    CAS  PubMed  Google Scholar 

  98. Xie, Y.; Liu, Y.; Zhao, Y.; Tsang, Y. H.; Lau, S. P.; Huang, H.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A2014, 2, 9142–9149.

    CAS  Google Scholar 

  99. Qi, D.; Liu, Z.; Liu, Y.; Leow, W. R.; Zhu, B.; Yang, H.; Yu, J.; Wang, W.; Wang, H.; Yin, S.; Chen, X. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater.2015, 27, 5559–5566.

    CAS  PubMed  Google Scholar 

  100. Lamberti, A.; Clerici, F.; Fontana, M.; Scaltrito, L. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater.2016, 6, 1600050.

    Google Scholar 

  101. Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C2009, 113, 13103–13107.

    CAS  Google Scholar 

  102. Huang, Y.; Liang, J.; Chen, Y. An overview of the applications of graphene-based materials in supercapacitors. Small2012, 8, 1805–1834.

    CAS  PubMed  Google Scholar 

  103. Song, W.; Zhu, J.; Gan, B.; Zhao, S.; Wang, H.; Li, C.; Wang, J. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene. Small2018, 14, 1702249.

    Google Scholar 

  104. Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater.2012, 24, 1856–1861.

    CAS  PubMed  Google Scholar 

  105. Li, Y.; Sheng, K.; Yuan, W.; Shi, G. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem. Commun.2013, 49, 291–293.

    Google Scholar 

  106. Cheng, H.; Hu, Y.; Zhao, F.; Dong, Z.; Wang, Y.; Chen, N.; Zhang, Z.; Qu, L. Moisture-activated torsional graphene-fiber motor. Adv. Mater.2014, 26, 2909–2913.

    CAS  PubMed  Google Scholar 

  107. Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater.2013, 25, 2326–2331.

    CAS  PubMed  Google Scholar 

  108. Zang, X.; Zhu, M.; Li, X.; Li, X.; Zhen, Z.; Lao, J.; Wang, K.; Kang, F.; Wei, B.; Zhu, H. Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy2015, 15, 83–91.

    CAS  Google Scholar 

  109. Wang, S.; Liu, N.; Su, J.; Li, L.; Long, F.; Zou, Z.; Jiang, X.; Gao, Y. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano2017, 11, 2066–2074.

    CAS  PubMed  Google Scholar 

  110. Guo, K.; Wang, X.; Hu, L.; Zhai, T.; Li, H.; Yu, N. Highly stretchable waterproof fiber asymmetric supercapacitors in an integrated structure. ACS Appl. Mater. Interfaces2018, 10, 19820–19827.

    CAS  PubMed  Google Scholar 

  111. Li, P.; Jin, Z.; Peng, L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater.2018, 30, 1800124.

    Google Scholar 

  112. Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano2013, 7, 7975–7982.

    CAS  PubMed  Google Scholar 

  113. Gilshteyn, E. P.; Amanbayev, D.; Anisimov, A. S.; Kallio, T.; Nasibulin, A. G. All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep.2017, 7, 17449.

    PubMed  PubMed Central  Google Scholar 

  114. Chen, X.; Qiu, L.; Ren, J.; Guan, G.; Lin, H.; Zhang, Z.; Chen, P.; Wang, Y.; Peng, H. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater.2013, 25, 6436–6441.

    CAS  PubMed  Google Scholar 

  115. Xu, P.; Wei, B.; Cao, Z.; Zheng, J.; Gong, K.; Li, F.; Yu, J.; Li, Q.; Lu, W.; Byun, J. H.; Kim, B. S.; Yan, Y.; Chou, T. W. Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano2015, 9, 6088–6096.

    CAS  PubMed  Google Scholar 

  116. Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J. H.; Lee, S.; Kim, D. H. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv. Funct. Mater.2017, 27, 1704353.

    Google Scholar 

  117. Zhang, Q.; Sun, J.; Pan, Z.; Zhang, J.; Zhao, J.; Wang, X.; Zhang, C.; Yao, Y.; Lu, W.; Li, Q.; Zhang, Y.; Zhang, Z. Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy2017, 39, 219–228.

    CAS  Google Scholar 

  118. Li, M.; Zu, M.; Yu, J.; Cheng, H.; Li, Q. Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small2017, 13, 1602994.

    Google Scholar 

  119. Yun, T. G.; Hwang, B. I.; Kim, D.; Hyun, S.; Han, S. M. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater. Interfaces2015, 7, 9228–9234.

    CAS  PubMed  Google Scholar 

  120. Kim, B. S.; Lee, K.; Kang, S.; Lee, S.; Pyo, J. B.; Choi, I. S.; Char, K.; Park, J. H.; Lee, S. S.; Lee, J.; Son, J. G. 2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors. Nanoscale2017, 9, 13272–13280.

    CAS  PubMed  Google Scholar 

  121. Chen, C.; Cao, J.; Wang, X.; Lu, Q.; Han, M.; Wang, Q.; Dai, H.; Niu, Z.; Chen, J.; Xie, S. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy2017, 42, 187–194.

    CAS  Google Scholar 

  122. Zhu, Y.; Li, N.; Lv, T.; Yao, Y.; Peng, H.; Shi, J.; Cao, S.; Chen, T. Agdoped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A2018, 6, 941–947.

    CAS  Google Scholar 

  123. Liang, X.; Zhao, L.; Wang, Q.; Ma, Y.; Zhang, D. A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/PANI composite film. Nanoscale2018, 10, 22329–22334.

    CAS  PubMed  Google Scholar 

  124. Chen, C. R.; Qin, H.; Cong, H. P.; Yu, S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater.2019, 31, 1900573.

    Google Scholar 

  125. Jeong, H. T.; Du, J. F.; Kim, Y. R.; Raj, C. J.; Kim, B. C. Electrochemical performances of highly stretchable polyurethane (PU) supercapacitors based on nanocarbon materials composites. J. Alloy. Compd.2019, 777, 67–72.

    CAS  Google Scholar 

  126. Li, F.; Chen, J.; Wang, X.; Xue, M.; Chen, G. F. Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes. Adv. Funct. Mater.2015, 25, 4601–4606.

    CAS  Google Scholar 

  127. Li, N.; Lv, T.; Yao, Y.; Li, H.; Liu, K.; Chen, T. Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors. J. Mater. Chem. A2017, 5, 3267–3273.

    CAS  Google Scholar 

  128. Li, K.; Huang, Y.; Liu, J.; Sarfraz, M.; Agboola, P. O.; Shakir, I.; Xu, Y. A three-dimensional graphene framework-enabled highperformance stretchable asymmetric supercapacitor. J. Mater. Chem. A2018, 6, 1802–1808.

    CAS  Google Scholar 

  129. Guo, F.; Jiang, Y.; Xu, Z.; Xiao, Y.; Fang, B.; Liu, Y.; Gao, W.; Zhao, P.; Wang, H.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun.2018, 9, 881.

    PubMed  PubMed Central  Google Scholar 

  130. Chen, H.; Li, Y.; Feng, Y.; Lv, P.; Zhang, P.; Feng, W. Electrodeposition of carbon nanotube/carbon fabric composite using cetyltrimethylammonium bromide for high performance capacitor. Electrochim. Acta2012, 60, 449–455.

    CAS  Google Scholar 

  131. Lv, P.; Zhang, P.; Feng, Y.; Li, Y.; Feng, W. High-performance electrochemical capacitors using electrodeposited MnO2 on carbon nanotube array grown on carbon fabric. Electrochim. Acta2012, 78, 515–523.

    CAS  Google Scholar 

  132. Zhang, Q.; Li, Y.; Feng, Y.; Feng, W. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochim. Acta2013, 90, 95–100.

    CAS  Google Scholar 

  133. Li, D.; Li, Y.; Feng, Y.; Hu, W.; Feng, W. Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J. Mater. Chem. A2015, 3, 2135–2143.

    CAS  Google Scholar 

  134. Peng, L.; Feng, Y.; Lv, P.; Lei, D.; Shen, Y.; Li, Y.; Feng, W. Transparent, conductive, and flexible multiwalled carbon nanotube/graphene hybrid electrodes with two three-dimensional microstructures. J. Phys. Chem. C2012, 116, 4970–4978.

    CAS  Google Scholar 

  135. Lv, P.; Feng, Y. Y.; Li, Y.; Feng, W. Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. J. Power Sources2012, 220, 160–168.

    CAS  Google Scholar 

  136. Feng, W.; Zhang, Q.; Li, Y.; Feng, Y. Preparation of sulfonated graphene/polyaniline composites in neutral solution for highperformance supercapacitors. J. Solid State Electr.2014, 18, 1127–1135.

    CAS  Google Scholar 

  137. Chen, Y.; Li, Y.; Yao, F.; Peng, C.; Cao, C.; Feng, Y.; Feng, W. Nitrogen and fluorine co-doped holey graphene hydrogel as a binder-free electrode material for flexible solid-state supercapacitors. Sustain. Energ. Fuels2019, 3, 2237–2245.

    CAS  Google Scholar 

  138. Lv, P.; Zhang, P.; Li, F.; Li, Y.; Feng, Y.; Feng W. Vertically aligned carbon nanotubes grown on carbon fabric with high rate capability for super-capacitors. Synth. Met.2012, 162, 1090–1096.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Ministry of Science and Technology of China (No. 2016YFA0200200), the National Natural Science Foundation of China (Nos. 21875114, 51373078, and 51422304), Natural Science Foundation of Tianjin City (No. 15JCYBJC17700), and 111 Project (No. B18030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, WL., Cai, ZH., Zhang, Y. et al. An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene. Chin J Polym Sci 38, 491–505 (2020). https://doi.org/10.1007/s10118-020-2386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2386-x

Keywords

Navigation