Skip to main content

Advertisement

Log in

Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of polyamic acid copolymers (co-PAAs) with para-hydroxyl groups was synthesized using two diamine monomers, namely p-phenylenediamine (p-PDA) and 5-amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole (m-pHBOA), of different molar ratios through copolymerization with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) in N,N-dimethyacetamine (DMAc). The co-PAA solutions were used to fabricate fibers by dry-jet wet spinning, and thermal imidization was conducted to obtain polyimide copolymer (co-PI) fibers. The effects of the m-pHBOA moiety on molecular packing and physical properties of the prepared fibers were investigated. Fourier transform infrared (FTIR) spectroscopic results confirmed that intra/intermolecular hydrogen bonds originated from the hydroxyl group and the nitrogen atom of the benzoxazole group and/or the hydroxyl group and the oxygen atom of the carbonyl group of cyclic imide. As-prepared PI fibers displayed homogenous and smooth surface and uniform diameter. The glass transition temperatures (Tgs) of PI fibers were within 311−337 °C. The polyimide fibers showed 5% weight loss temperature (T5%) at above 510 °C in air. Two-dimensional wide-angle X-ray diffraction (WXRD) patterns indicated that the homo-PI and co-PI fibers presented regularly arranged polymer chains along the fiber axial direction. The ordered molecular packing along the transversal direction was destroyed by introducing the m-pHBOA moiety. Moreover, the crystallinity and orientation factors increased with increasing draw ratio. Small-angle X-ray scattering (SAXS) results showed that it is beneficial to reduce defects in the fibers by increasing the draw ratio. The resultant PI fibers exhibited excellent mechanical properties with fracture strength and initial modulus of 2.48 and 89.73 GPa, respectively, when the molar ratio of p-PDA/m-pHBOA was 5/5 and the draw ratio was 3.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, F.; Huang, L.; Shi, Y.; Jin, X.; Wu, Z.; Shen, Z.; Chuang, K.; Lyon, R. E.; Harris, F. W.; Cheng S. Z. D. Thermal degradation mechanism and thermal mechanical properties of two high-performance aromatic polyimide fibers. J. Macromol. Sci. Part B: Phys. 2016, 38, 107–122.

    Article  Google Scholar 

  2. Zhao, Y.; Dong, Z.; Li, G.; Dai, X.; Liu, F.; Ma, X.; Qiu, X. Atomic oxygen resistance of polyimide fibers with phosphorus-containing side chains. RSC Adv. 2017, 7, 5437–5444.

    Article  CAS  Google Scholar 

  3. Dong, J.; Yang, C.; Cheng, Y.; Wu, T.; Zhao, X.; Zhang, Q. Facile method for fabricating low dielectric constant polyimide fibers with hyperbranched polysiloxane. J. Mater. Chem. C 2017, 5, 2818–2825.

    Article  CAS  Google Scholar 

  4. Zhao, Y.; Feng, T.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the main chain. RSC Adv. 2016, 6, 42482–42494.

    Article  CAS  Google Scholar 

  5. Penn, L.; Larsen, F. Physicochemical properties of Kevlar-49 fiber. J. Appl. Polym. Sci. 1979, 23, 59–73.

    Article  CAS  Google Scholar 

  6. Yang, H. in Kevlar ara id fiber, Wiley, 1993.

    Google Scholar 

  7. Choe, E. W.; Kim, S. N. Synthesie, spining and fiber mechanical properties of poly(p-phenylenebenzobisoxazole). Macromolecules 1981, 14, 920–924.

    Article  CAS  Google Scholar 

  8. Sikkema, D. J. Design, synthesis and properties of a novel rigid rod polymer, PIPD or ‘M5’: High modulus and tenacity fibres with substantial compressive strength. Polymer 1998, 39, 5981–5986.

    Article  CAS  Google Scholar 

  9. Afshari, M.; Sikkema, D. J.; Lee, K.; Bogle, M. High performance fibers based on rigid and flexible polymers. Polym. Rev. 2008, 48, 230–274.

    Article  CAS  Google Scholar 

  10. Eashoo, M.; Wu, Z.; Zhang, A.; Shen, D.; Tse, C.; Harris, F. W.; Cheng, S. Z. D.; Gardner, K. H.; Hsiao, B. S. High performance aromatic polyimide fibers, 3. A polyimide synthesized from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride and 2, 2′-dimethyl-4, 4′-diaminobiphenyl. Macromol. Chem. Phys. 1994, 195, 2207–2225.

    CAS  Google Scholar 

  11. Cheng, S. Z. D.; Wu, Z.; Mark, E. A high-performance aromatic polyimide fibre: 1. Structure, properties and mechanical-history dependence. Polymer 1991, 32, 1803–1810.

    CAS  Google Scholar 

  12. Dong, J.; Yin, C.; Luo, W.; Zhang, Q. Synthesis of organ-soluble copolyimides by one-step polymerization and fabrication of high performance fibers. J. Mater. Sci. 2013, 48, 7594–7602.

    Article  CAS  Google Scholar 

  13. Park, S. K.; Farris, R. J. Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization. Polymer 2001, 42, 10087–10093.

    Article  CAS  Google Scholar 

  14. Dorogy, W. E.; St Clair, A. K. Wet spinning of solid polyamic acid fibers. J. Appl. Polym. Sci. 1991, 43, 501–519.

    Article  CAS  Google Scholar 

  15. Zhang, E.; Dai, X.; Dong, Z.; Qiu, X.; Ji, X. Critical concentration and scaling exponents of one soluble polyimide from dilute to semidilute entangled solutions. Polymer 2016, 84, 275–285.

    Article  CAS  Google Scholar 

  16. Xiang, H.; Huang, Z.; Liu, L.; Chen, L.; Zhu, J.; Hu, Z.; Yu, J. Structure and properties of polyimide (BTDA-TDI/MDI copolyimide) fibers obtained by wet-spinning. Macromol. Res. 2011, 19, 645–653.

    Article  CAS  Google Scholar 

  17. Yang, W.; Liu, F.; Zhang, J.; Zhang, E.; Qiu, X.; Ji, X. Influence of thermal treatment on the structure and mechanical properties of one aromatic BPDA-PDA polyimide fiber. Eur. Polym. J. 2017, 96, 429–442.

    Article  CAS  Google Scholar 

  18. Yin, C.; Dong, J.; Tan, W.; Lin, J.; Chen, D.; Zhang, Q. Straininduced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety. Polymer 2015, 75, 178–186.

    Article  CAS  Google Scholar 

  19. Dong, J.; Yin, C.; Lin, J.; Zhang, D.; Zhang, Q. Evolution of the microstructure and morphology of polyimide fibers during heat-drawing process. RSC Adv. 2014, 4, 44666–44673.

    Article  CAS  Google Scholar 

  20. Yang, W.; Liu, F.; Zhang, E.; Qiu, X.; Ji, X. Influence of atmosphere and force during thermal imidization on the structure and properties of BPDA-PDA polyimide fibers. Chem. J. Chinese U-Chinese 2017, 38, 150–158.

    CAS  Google Scholar 

  21. Yan, X.; Zhang, M.; Qi, S.; Tian, G.; Niu, H.; Wu, D. A highperformance aromatic co-polyimide fiber: Structure and property relationship during gradient thermal annealing. J. Mater. Sci. 2018, 53, 2193–2207.

    Article  CAS  Google Scholar 

  22. Yang, W.; Liu, F.; Li, G.; Zhang, E.; Xue, Y.; Dong, Z.; Qiu, X.; Ji, X. Comparison of different methods for determining the imidization degree of polyimide fibers. Chinese J. Polym. Sci. 2016, 34, 209–220.

    Article  CAS  Google Scholar 

  23. Sukhanova, T.; Baklagina, Y. G.; Kudryavtsev, V.; Maricheva, T.; Lednicky, F. Morphology, deformation and failure behaviour of homo-and copolyimide fibres: 1. Fibres from 4, 4′-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2, 5-bis(4-aminophenyl)-pyrimidine (2, 5PRM). Polymer 1999, 40, 6265–6276.

    CAS  Google Scholar 

  24. Chen, X.; Li, Z.; Liu, F.; Sun, Q.; Li, J. Synthesis and properties of poly(imide-benzoxazole) fibers from 4, 4′-oxydiphthalic dianhydride in polyphosphoric acid. Eur. Polym. J. 2015, 64, 108–117.

    Article  CAS  Google Scholar 

  25. Yin, C.; Dong, J.; Zhang, D.; Lin, J.; Zhang, Q. Enhanced mechanical and hydrophobic properties of polyimide fibers containing benzimidazole and benzoxazole units. Eur. Polym. J. 2015, 67, 88–98.

    Article  CAS  Google Scholar 

  26. Cheng, Y.; Dong, J.; Yang, C.; Wu, T.; Zhao, X.; Zhang, Q. Synthesis of poly(benzobisoxazole-co-imide) and fabrication of high-performance fibers. Polymer 2017, 133, 50–59.

    Article  CAS  Google Scholar 

  27. Gan, F.; Dong, J.; Zhang, D.; Tan, W.; Zhao, X.; Zhang, Q. High-performance polyimide fibers derived from wholly rigidrod monomers. J. Mater. Sci. 2018, 53, 5477–5489.

    Article  CAS  Google Scholar 

  28. Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. High-performance copolyimide fibers containing quinazolinone moiety: Preparation, structure and properties. Polymer 2013, 54, 1700–1708.

    Article  CAS  Google Scholar 

  29. Borjigin, H.; Liu, Q.; Zhang, W.; Gaines, K.; Riffle, J. S.; Paul, D. R.; Freeman, B. D.; McGrath, J. E. Synthesis and characterization of thermally rearranged (TR) polybenzoxazoles: Influence of isometic structure on gas transport properties. Polymer 2015, 75, 199–210.

    Article  CAS  Google Scholar 

  30. Hodgkin, J. H.; Liu, M. S.; Dao, B. N.; Mardel, J.; Hill, A. J. Reaction mechanism and products of the thermal conversion of hydroxy-containing polyimides. Eur. Polym. J. 2011, 47, 394–400.

    Article  CAS  Google Scholar 

  31. Han, S. H., Lee, J. E.; Lee, K. J.; Park, H. B.; Lee, Y. M. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J. Membr. Sci. 2010, 357, 143–151.

    Article  CAS  Google Scholar 

  32. Dai, X.; Bao, F.; Jiao, L.; Yao, H.; Ji, X.; Qiu, X.; Men, Y. High-performance polyimide copolymer fibers derived from 5-amino-2-(2-hydroxy-4-aminobenzene)-benzoxazole: Preparation, structure and properties. Polymer 2018, 150, 254–266.

    Article  CAS  Google Scholar 

  33. Preston, J.; Dewinter, W.; Hofferbert, W. Heterocyclic intermediates for the preparation of thermally stable polymers. II. Benzoxazoles and benzothiazoles. J. Heterocycl. Chem. 1968, 5, 269–273.

    Article  CAS  Google Scholar 

  34. Klug, H. P.; Alexander, L. E. in X-ray diffraction procedures, Wiley: New York, 1954.

    Google Scholar 

  35. Wilchinsky, Z. Orientation in crystalline polymers related to deformation. Polymer 1964, 5, 271–281.

    Article  CAS  Google Scholar 

  36. Ruland, W. Small-angle scattering studies on carbonized cellulose fibers. J. Polym. Sci., Part C: Polym. Symp. 1969, 28, 143–151.

    Article  Google Scholar 

  37. Guiner, A.; Fournet, G.; Walker, C. in Small angle scattering of X-raays, Wiley & Sons, New York, 1955.

    Google Scholar 

  38. Kratky, O.; Porod, G. Diffuse small-angle scattering of X-rays in colloid systems. J. Coll. Sci. 1949, 4, 35–70.

    Article  CAS  Google Scholar 

  39. Lin, C.; Kuo, J.; Chen, C.; Fang, J. Investigation of bifurcated hydrogen bonds within the thermotropic liquid crystalline polyurethanes. Polymer 2012, 53, 254–258.

    Article  CAS  Google Scholar 

  40. Dong, H.; Xin, Z.; Lu, X.; Lv, Y. Effect of-substituents on the surface characteristics and hydrogen bonding network of polybenzoxazines. Polymer 2011, 52, 1092–1101.

    Article  CAS  Google Scholar 

  41. Snyder, R.; Thomson, B.; Bartges, B.; Czerniawski, D.; Painter, P. FTIR studies of polyimides: Thermal curing. Macromolecules 1989, 22, 4166–4172.

    Article  CAS  Google Scholar 

  42. Konieczny, J.; Wunder, S. Absence of noncyclic imide formation in PMDA-ODA polyimide. Macromolecules 1996, 29, 7613–7615.

    Article  CAS  Google Scholar 

  43. Ma, X.; Kang, C.; Chen, W.; Jin, R.; Guo, H.; Qiu, X.; Gao, L. Effect of multiple H-bonding on the properties of polyimides containing the rigid rod groups. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 570–581.

    Article  CAS  Google Scholar 

  44. Luo, L.; Yao, J.; Wang, X.; Li, K.; Huang, J.; Li, B.; Wang, H.; Feng, Y.; Liu, X. The evolution of macromolecular packing and sudden crystallization in rigid-rod polyimide via effect of multiple H-bonding on charge transfer (CT) interactions. Polymer 2014, 55, 4258–4269.

    Article  CAS  Google Scholar 

  45. Fan, L.; Zhao, D.; Bian, C.; Wang, Y.; Liu, G. Glass transition temperatures of copolymers from methyl methacrylate, styrene, and acrylonitrile: Binary copolymers. Polym. Bull. 2011, 67, 1311–1323.

    Article  CAS  Google Scholar 

  46. Jiang, G.; Huang, W.; Li, L.; Wang, X.; Pang, F.; Zhang, Y.; Wang, H. Structure and properties of regenerated cellulose fibers from different technology processes. Carbohyd. Polym. 2012, 87, 2012–2018.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2017YFB0308300) and the National Basic Research Program of China (No. 2014CB643603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Peng Qiu or Yong-Feng Men.

Electronic supplementary material

10118_2019_2205_MOESM1_ESM.pdf

Preparation and Properties of High-Performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, XM., Gao, H., Zhang, R. et al. Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole. Chin J Polym Sci 37, 478–492 (2019). https://doi.org/10.1007/s10118-019-2205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2205-4

Keywords

Navigation