Skip to main content
Log in

Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Phenethyl-bridged DOPO derivative (DiDOPO) was combined with graphene nanosheets (GNSs) in epoxy resin (EP) to improve its flame retardancy. The results indicated that the introduction of only 1.5 wt% DiDOPO/1.5 wt% GNS in EP increased the limited oxygen index (LOI) from 21.8% to 32.2%, hence meeting UL 94 V-0 rating. The thermogravimetric analyses revealed that char yield rose in presence of GNSs to form thermally stable carbonaceous char. The decomposition and pyrolysis products in gas phase were characterized by thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), and the release of large amounts of phosphorus was detected in the gas phase. The evaluation of flame-retardant effect by cone calorimetry demonstrated that GNSs improved the protective-barrier effect of fire residue of EP/DiDOPO/GNS. The latter was further confirmed by digital photography and scanning electron microscopy (SEM). Also, Raman spectroscopy showed that GNSs enhanced graphitization degree of the resin during combustion. Overall, the combination of DiDOPO with GNSs provides an effective way for developing high-performance resins with improved flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martins, M. S. S.; Schartel, B.; Magalhães, Fernão, D.; Pereira, C. M. C. The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater. 2016, 301, 9–35.

    Google Scholar 

  2. Zhang, X.; He, Q.; Gu, H.; Colorado, H. A.; Wei, S.; Guo, Z. Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl. Mater. Interfaces 2013, 5, 898–910.

    Article  CAS  Google Scholar 

  3. Rakotomalala, M.; Wagner, S.; Döring, M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials 2010, 3, 4300–4327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhuang, R. C.; Yang, J.; Wang, D. Y.; Huang, Y. X. Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Adv. 2015, 5, 100049–100053.

    Article  CAS  Google Scholar 

  5. Wang, X.; Kalali, E. N.; Wang, D. Y. Renewable cardanolbased surfactant modified layered double hydroxide as a flame retardant for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3, 3281–3290.

    Article  CAS  Google Scholar 

  6. Zotti, A.; Borriello, A.; Ricciardi, M.; Antonucci, V.; Giordano, M.; Zarrelli, M. Effects of sepiolite clay on degradation and fire behavior of a bisphenol A-based epoxy. Compos. Part B: Eng. 2015, 73, 139–148.

    Article  CAS  Google Scholar 

  7. Deng, L. L.; Shen, M. M.; Yu, J.; Wu, K.; Ha, C. Y. Preparation, characterization, and flame retardancy of novel rosinbased siloxane epoxy resins. Ind. Eng. Chem. Res. 2012, 51, 8178–8184.

    Article  CAS  Google Scholar 

  8. Zang, L.; Wagner, S.; Ciesielski, M.; Müller, P.; Döring, M. Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym. Adv. Technol. 2011, 22, 1182–1191.

    Article  CAS  Google Scholar 

  9. Long, L. J.; Yin, J. B.; He, W. T.; Qin, S. H.; Yu, J. Influence of a phenethyl-bridged DOPO derivative on the flame retardancy, thermal properties, and mechanical properties of poly(lactic acid). Ind. Eng. Chem. Res. 2016, 55, 10803–10812.

    Article  CAS  Google Scholar 

  10. Chang, Q. F.; Long, L. J.; He, W. T.; Qin, S. H.; Yu, J. Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochim. Acta 2016, 639, 84–90.

    Article  CAS  Google Scholar 

  11. Meenakshi, K. S.; Sudhan, E. P. J.; Kumar, S. A.; Umapathy, M. J. Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog. Org. Coat. 2011, 72, 402–409.

    Article  CAS  Google Scholar 

  12. Zhang, W. C.; Li, X. M.; Yang, R. J. Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym. Degrad. Stab. 2012, 97, 1314–1324.

    Article  CAS  Google Scholar 

  13. Wang, T.; Wang, J.; Huo, S. Q.; Zhang, B.; Yang, S. Preparation and flame retardancy of DOPO-based epoxy resin containing bismaleimide. High. Perform. Polym. 2016, 28, 1090–1095.

    Article  CAS  Google Scholar 

  14. Kiliaris, P.; Papaspyrides, C. D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958.

    Article  CAS  Google Scholar 

  15. Martino, L.; Guigo, N.; Van Berkel, J. G.; Sbirrazzuoli, N. Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Compos. Part B: Eng. 2017, 110, 96–105.

    Article  CAS  Google Scholar 

  16. Wang, D.; Zhou, K. Q.; Yang, W.; Xing, W. Y,; Hu, Y.; Gong, X. L. Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res. 2013, 52, 17882–17890.

    Article  CAS  Google Scholar 

  17. Li, P. P.; Zheng, Y. P.; Li, M. Z.; Fan, W. D.; Shi, T.; Wang, Y. D.; Zhang, A. B.; Wang, J. S. Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos. Part A: Appl. S. 2016, 81, 172–181.

    Article  CAS  Google Scholar 

  18. Sang, B.; Li, Z. W.; Li, X. H.; Yu, L. G.; Zhang, Z. J. Graphene-based flame retardants: a review. J. Mater. Sci. 2016, 51, 8271–8295.

    Article  CAS  Google Scholar 

  19. Wang, Z.; Tang, X. Z.; Yu, Z. Z.; Guo, P.; Song, H. H.; Du, X. S. Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chinese J. Polym. Sci. 2011, 29, 368–376.

    Article  CAS  Google Scholar 

  20. Liu, S.; Yan, H. Q.; Fang, Z. P.; Wang, H. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos. Sci. Technol. 2014, 90, 40–47.

    Article  CAS  Google Scholar 

  21. Liu, S.; Fang, Z. P.; Yan, H. Q.; Wang, H. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. RSC Adv. 2016, 6, 5288–5295.

    Article  CAS  Google Scholar 

  22. Liu, S.; Fang, Z. P.; Yan, H. Q.; Chevali, V. S.; Wang, H. Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos. Part A: Appl. S. 2016, 89, 26–32.

    Article  CAS  Google Scholar 

  23. Huang, W. J.; He, W. T.; Long, L. J.; Yan, W.; He, M.; Qin, S. H.; Yu, J. Highly efficient flame-retardant glass-fiber-reinforced polyamide 6T system based on a novel DOPO-based derivative: Flame retardancy, thermal decomposition, and pyrolysis behavior. Polym. Degrad. Stab. 2018, 148, 26–41.

    Article  CAS  Google Scholar 

  24. Yan, W.; Yu, J.; Zhang, M. Q.; Qin, S. H.; Wang, T.; Huang, W. J.; Long, L. J. Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. RSC Adv. 2017, 7, 46236–46245.

    Article  CAS  Google Scholar 

  25. Yao, Q.; Wang, J.; Mack, A. G. 2015, U.S. Pat., 9,012,546

  26. Wang, X.; Hu, Y.; Song, L.; Xing, W. Y.; Lu, H. D.; Lv, P.; Jie, G. X. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435–2445.

    Article  CAS  Google Scholar 

  27. Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H. J.; Shields, J. R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4, 928–933.

    Article  CAS  PubMed  Google Scholar 

  28. Qiu, Y.; Qian, L. J.; Xi, W. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Adv. 2016, 6, 56018–56027.

    Article  CAS  Google Scholar 

  29. Buczko, A.; Stelzig, T.; Bommer, L.; Rentsch, D.; Heneczkowski, M.; Gaan, S. Bridged DOPO derivatives as flame retardants for PA6. Polym. Degrad. Stab. 2014, 107, 158–165.

    Article  CAS  Google Scholar 

  30. Wang, J. Y.; Qian, L. J.; Huang, Z. G.; Fang, Y. Y.; Qiu, Y. Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym. Degrad. Stab. 2016, 130, 173–181.

    Article  CAS  Google Scholar 

  31. Brehme, S.; Schartel, B.; Goebbels, J.; Fischer, O.; Pospiech, D.; Bykov, Y.; Döring, M. Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym. Degrad. Stab. 2011, 96, 875–884.

    Article  CAS  Google Scholar 

  32. Tang, S.; Wachtendorf, V.; Klack, P.; Qian, L. J.; Dong, Y. P.; Schartel, B. Enhanced flame-retardant effect of a montmorillonite/ phosphaphenanthrene compound in an epoxy thermoset. RSC Adv. 2017, 7, 720–728.

    Article  CAS  Google Scholar 

  33. Brehme, S.; Köppl, T.; Schartel, B.; Altstädt, V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. e- Polymers 2014, 14, 193–208.

    Article  CAS  Google Scholar 

  34. Xu, W. H.; Wirasaputra, A.; Liu, S. M.; Yuan, Y. C.; Zhao, J. Q. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 2015, 122, 44–51.

    Article  CAS  Google Scholar 

  35. Schartel, B.; Perret, B.; Dittrich, B.; Ciesielski, M.; Krämer, J.; Müller, P.; Altstädt, V.; Zang, L.; Döring, M. Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol. Mater. Eng. 2016, 301, 9–35.

    Article  CAS  Google Scholar 

  36. Brehme, S.; Köppl, T.; Schartel, B.; Fischer, O.; Altstädt, V.; Pospiech, D.; Döring, M. Phosphorus polyester—an alternative to low-molecular-weight flame retardants in poly(butylene terephthalate)?. Macromol. Chem. Phys. 2012, 213, 2386–2397.

    Article  CAS  Google Scholar 

  37. Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries. Macromol. Mater. Eng. 2011, 296, 14–30.

    Article  CAS  Google Scholar 

  38. Qian, X. D.; Song, L.; Yu, B.; Wang, B. B.; Yuan, B. H.; Shi, Y. Q.; Hu, Y.; Yuen, R. K. K. Novel organic-inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J. Mater. Chem. A 2013, 1, 6822–6830.

    Article  CAS  Google Scholar 

  39. Wang, X.; Hu, Y.; Song, L.; Xing, W. Y.; Lu, H. D. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J. Anal. Appl. Pyrol. 2011, 92, 164–170.

    Article  CAS  Google Scholar 

  40. Zhang, W. C.; Li, X. M.; Li, L. M.; Yang, R. J. Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym. Degrad. Stab. 2012, 97, 1041–1048.

    Article  CAS  Google Scholar 

  41. Li, Z. Q.; Yang, R. J. Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro- 9-oxa-10-phosphaphenanthrene-10-oxide on flameretarded epoxy resins. Polym. Degrad. Stab. 2014, 109, 233–239.

    Article  CAS  Google Scholar 

  42. Wawrzyn, E.; Schartel, B.; Seefeldt, H.; Karrasch, A.; Jäger, C. What reacts with what in bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate) during pyrolysis and fire behavior?. Ind. Eng. Chem. Res. 2012, 51, 1244–1255.

    Article  CAS  Google Scholar 

  43. Schartel, B.; Balabanovich, A. I.; Braun, U.; Knoll, U.; Artner, J.; Ciesielski, M.; Döring, M.; Perez, R.; Sandler, J. K. W.; Altstädt, V.; Hoffmann, T.; Pospiech, D. Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J. Appl. Polym. Sci. 2007, 104, 2260–2269.

    Article  CAS  Google Scholar 

  44. Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130.

    Article  CAS  Google Scholar 

  45. Tuinstra, F.; Koenig, J. L. Characterization of graphite fiber surfaces with raman spectroscopy. J. Compos. Mater. 1970, 4, 492–499.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Guizhou Science and Technology Cooperation Project (No. 20157304) and the Natural Science Foundation of Education Department of Guizhou Province (No. 2015400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yan or Ming-Qiu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Zhang, MQ., Yu, J. et al. Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets. Chin J Polym Sci 37, 79–88 (2019). https://doi.org/10.1007/s10118-019-2175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2175-6

Keywords

Navigation