Skip to main content
Log in

Dewetting Behavior of Hydrogen Bonded Polymer Complex Film under Hydrothermal Condition

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Hydrogen-bonded polymer complex films with the thickness ranging from 50 nm to 2400 nm were prepared by layer-by-layer (LbL) assembly of poly(2-ethyl-2-oxazoline) (PEOX) and poly(acrylic acid) (PAA). The dewetting behavior of PEOX/PAA films under hydrothermal condition was investigated. It was found that the dewetting occurred at solid-liquid interface, and the typical morphologies such as holes, irregular cellular structure, and droplets were observed. Atomic force microscopy (AFM) revealed the initial rupture of the film. Microscopic Raman and infrared (IR) imaging demonstrated that the PEOX and PAA chains remained association during the dewetting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thiele, U. Open questions and promising new fields in dewetting. Eur. Phys. J. E 2003, 12(3), 409–416.

    Article  CAS  PubMed  Google Scholar 

  2. Herminghaus, S.; Brinkmann, M.; Seemann, R. Wetting and dewetting of complex surface geometries. Annu. Rev. Mater. Res. 2008, 38(1), 101–121.

    Article  CAS  Google Scholar 

  3. Xue, L.; Han, Y. Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 2011, 36(2), 269–293.

    Article  CAS  Google Scholar 

  4. Meredith, J. C.; Smith, A. P.; Karim, A.; Amis, E. J. Combinatorial materials science for polymer thin-film dewetting. Macromolecules 2000, 33(26), 9747–9756.

    Article  CAS  Google Scholar 

  5. Koplik, J. Molecular simulations of dewetting. Phys. Rev. Lett. 2000, 84(19), 4401–4404.

    Article  CAS  PubMed  Google Scholar 

  6. Higgins, A. M.; Jones, R. A. L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature 2000, 404(6777), 476–478.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, J. Z.; Zheng, Z. H.; Li, H. W.; Huck, W. T. S.; Sirringhaus, H. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 2004, 3(3), 171–176.

    Article  CAS  PubMed  Google Scholar 

  8. Powell, M. R.; Cleary, L.; Davenport, M.; Shea, K. J.; Siwy, Z. S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotech. 2011, 6(12), 798–802.

    Article  CAS  Google Scholar 

  9. Seemann, R.; Herminghaus, S.; Jacobs, K. Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 2001, 13(13), 4925–4938.

    Article  CAS  Google Scholar 

  10. van Hameren, R.; Schön, P.; van Buul, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 2006, 314(5804), 1433–1436.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, J. C.; Shang, Y. Y.; Zhang, D. J.; Xie, Z.; Hua, R. X.; Wang, J. J. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting. Chinese J. Polym. Sci. 2017, 35(9), 1043–1050.

    Article  CAS  Google Scholar 

  12. Wang, W. C.; Shi, K.; Pan, Y. X.; Peng, C.; Zhao, Z. L.; Liu, W.; Liu, Y. G.; Ji, X. L. Fabrication of polymersomes with controllable morphologies through dewetting W/O/W double emulsion droplets. Chinese J. Polym. Sci. 2016, 34(4), 475–482.

    Article  CAS  Google Scholar 

  13. Brochard-Wyart, F. “Droplet: capillarity and wetting”. Soft Matter Phys., Spinger-Verlag Berlin Heidelberg, 1999, p. 29

    Google Scholar 

  14. Vrij, A. Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 1966, 42, 23–33.

    Article  Google Scholar 

  15. Redon, C.; Brochardwyart, F.; Rondelez, F. Dynamics of dewetting. Phys. Rev. Lett. 1991, 66(66), 715–718.

    Article  CAS  PubMed  Google Scholar 

  16. Reiter, G. Dewetting of thin polymer-films. Phys. Rev. Lett. 1992, 68(1), 75–78.

    Article  CAS  PubMed  Google Scholar 

  17. Reiter, G. Dewetting as a probe of polymer mobility in thin films. Macromolecules 1994, 27(11), 3046–3052.

    Article  CAS  Google Scholar 

  18. Mukherjee, R.; Sharma, A. Instability, self-organization and pattern formation in thin soft films. Soft Matter 2015, 11(45), 8717–8740.

    Article  CAS  PubMed  Google Scholar 

  19. Mitlin, V. S. Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid Interface Sci. 1993, 156(2), 491–497.

    Article  CAS  Google Scholar 

  20. Redon, C.; Brzoska, J. B.; Brochardwyart, F. Dewetting and slippage of microscopic polymer films. Macromolecules 1994, 27(2), 468–471.

    Article  CAS  Google Scholar 

  21. Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251–1254.

    Article  CAS  Google Scholar 

  22. Roy, S.; Mukherjee, R. Ordered to isotropic morphology transition in pattern-directed dewetting of polymer thin films on substrates with different feature heights. ACS Appl. Mater. Interfaces 2012, 4(10), 5375–5385.

    Article  CAS  PubMed  Google Scholar 

  23. Seemann, R.; Herminghaus, S.; Jacobs, K. Dewetting patterns and molecular forces: areconciliation. Phys. Rev. Lett. 2001, 86(24), 5534–5537.

    Article  CAS  PubMed  Google Scholar 

  24. Bhandaru, N.; Das, A.; Salunke, N.; Mukherjee, R. Ordered alternating binary polymer nanodroplet array by sequential spin dewetting. Nano Lett. 2014, 14(12), 7009–7016.

    Article  CAS  PubMed  Google Scholar 

  25. Bhandaru, N.; Goohpattader, P. S.; Faruqui, D.; Mukherjee, R.; Sharma, A. Solvent-vapor-assisted dewetting of prepatterned thin polymer films: control of morphology, order, and pattern miniaturization. Langmuir 2015, 31(10), 3203–3214.

    Article  CAS  PubMed  Google Scholar 

  26. Bhandaru, N.; Das, A.; Mukherjee, R. Confinement induced ordering in dewetting of ultra-thin polymer bilayers on nanopatterned substrates. Nanoscale 2016, 8(2), 1073–1087.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, D.; Zhao, W.; Wei, D.; Russell, T. P. Dewetting on curved interfaces: a simple route to polymer nanostructures. Macromolecules 2011, 44(20), 8020–8027.

    Article  CAS  Google Scholar 

  28. Xia, T.; Ogawa, H.; Inoue, R.; Nishida, K.; Yamada, N. L.; Li, G.; Kanaya, T. Dewetting process of deuterated polystyrene and poly(vinyl methylether) blend thin films via phase separation. Macromolecules 2013, 46(11), 4540–4547.

    Article  CAS  Google Scholar 

  29. Li, S. J.; Zhang, W. X.; Jiang, F.; Lu, Y. Y.; Shi, T. F.; An, L. J. Dynamics of hole growing in polymer thin films during dewetting. Acta Polymerica Sinica (in Chinese) 2014, 24(9), 1174–1181.

    Google Scholar 

  30. Che, J.; Jawaid, A.; Grabowski, C. A.; Yi, Y.; Louis, G. C.; Ramakrishnan, S.; Vaia, R. A. Stability of polymer grafted nanoparticle monolayers: impact of architecture and polymer-substrate interactions on dewetting. ACS Macro Lett. 2016, 5(12), 1369–1374.

    Article  CAS  Google Scholar 

  31. Chandran, S.; Reiter, G. Transient cooperative processes in dewetting polymer melts. Phys. Rev. Lett. 2016, 116(8), 088301.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, P.; Huang, X.; Zhou, R.; Berne, B. J. Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 2005, 437(7055), 159–162.

    Article  CAS  PubMed  Google Scholar 

  33. Farrell, R. A.; Kehagias, N.; Shaw, M. T.; Reboud, V.; Zelsmann, M.; Holmes, J. D.; Torres, C. M. S.; Morris, M. A. Surface-directed dewetting of a block copolymer for fabricating highly uniform nanostructured microdroplets and concentric nanorings. ACS Nano 2011, 5(2), 1073–1085.

    Article  CAS  PubMed  Google Scholar 

  34. Besancon, B. M.; Green, P. F. Dewetting dynamics in miscible polymer-polymer thin film mixtures. J. Chem. Phys. 2007, 126(22), 224903.

    Article  CAS  PubMed  Google Scholar 

  35. Ma, M.; He, Z.; Yang, J.; Wang, Q.; Chen, F.; Wang, K.; Zhang, Q.; Deng, H.; Fu, Q. Vertical phase separation and liquid-liquid dewetting of thin PS/PCL blend films during spin coating. Langmuir 2011, 27(3), 1056–1063.

    Article  CAS  PubMed  Google Scholar 

  36. Merola, F.; Grilli, S.; Coppola, S.; Vespini, V.; Nicola, S. D.; Maddalena, P.; Carfagna, C.; Ferraro, P. Reversible fragmentation and self-assembling of nematic liquid crystal droplets on functionalized pyroelectric substrates. Adv. Funct. Mater. 2012, 22(15), 3097–3097.

    Article  CAS  Google Scholar 

  37. Fowlkes, J. D.; Kondic, L.; Diez, J.; Wu, Y.; Rack, P. D. Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 2011, 11(6), 2478–2485.

    Article  CAS  PubMed  Google Scholar 

  38. Krishna, H.; Sachan, R.; Strader, J.; Favazza, C.; Khenner, M.; Kalyanaraman, R. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnolgy 2010, 21(15), 155601.

    Article  CAS  Google Scholar 

  39. Péron, N.; Brochard-Wyart, F.; Duval, H. Dewetting of low-viscosity films at solid/liquid interfaces. Langmuir 2012, 28(45), 15844–15852.

    Article  CAS  PubMed  Google Scholar 

  40. Verma, A.; Sharma, A. Enhanced self-organized dewetting of ultrathin polymer films under water-organic solutions: fabrication of sub-micrometer spherical lens arrays. Adv. Mater. 2010, 22(46), 5306–5309.

    Article  PubMed  Google Scholar 

  41. Verma, A.; Sharma, A. Submicrometer pattern fabrication by intensification of instability in ultrathin polymer films under a water-solvent mix. Macromolecules 2011, 44(12), 4928–4935.

    Article  Google Scholar 

  42. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277(5330), 1232–1237.

    Article  CAS  Google Scholar 

  43. Borges, J.; Mano, J. F. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 2014, 114(18), 8883–8942.

    Article  CAS  PubMed  Google Scholar 

  44. Richardson, J. J.; Bjornmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348(6233), aaa2491.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, L.; Zheng, M.; Liu, X.; Sun, J. Layer-by-layer assembly of salt-containing polyelectrolyte complexes for the fabrication of dewetting-induced porous coatings. Langmuir 2011, 27(4), 1346–1352.

    Article  CAS  PubMed  Google Scholar 

  46. Shim, B. S.; Podsiadlo, P.; Lilly, D.G.; Agarwal, A.; Lee, J.; Tang, Z.; Ho, S.; Ingle, P.; Paterson, D.; Lu, W.; Kotov, N. A. Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Lett. 2007, 7(11), 3266–3273.

    Article  CAS  PubMed  Google Scholar 

  47. Cao, Y. Fluorescence staining and confocal laser scanning microscopy study of hydrogen-bonded poly(vinylpyrrolidone)/poly(acrylic acid) film. Colloids Surf. A 2011, 392(1), 83–87.

    Article  CAS  Google Scholar 

  48. Yang, S.; Li, Y.; Li, X.; Li, Y.; Zhang, X.; Xu, J. Patterning of hydrogen-bonded assembly film through ionization in vapor. Thin Solid Films 2009, 517(9), 3024–3027.

    Article  CAS  Google Scholar 

  49. Ma, S.; Qi, X.; Cao, Y.; Yang, S.; Xu, J. Hydrogen bond detachment in polymer complexes. Polymer 2013, 54(20), 5382–5390.

    Article  CAS  Google Scholar 

  50. Decher, G.; Hong, J. D. Buildup of ultrathin multilayer films by a self-assembly process (1), consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol. Symposia 1991, 46(11), 321–327.

    Article  CAS  Google Scholar 

  51. Stockton, W. B.; Rubner, M. F. Molecular-level processing of conjugated polymers. 4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 1997, 30(9), 2717–2725.

    Article  CAS  Google Scholar 

  52. Wang, L.; Wang, Z.; Zhang, X.; Shen, J.; Chi, L.; Fuchs, H. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun. 1997, 18(6), 509–514.

    Article  CAS  Google Scholar 

  53. Kharlampieva, E.; Sukhishvili, S. A. Hydrogen-bonded layer-by-layer polymer films. Polym. Rev. 2006, 46(4), 377–395.

    CAS  Google Scholar 

  54. Yang, S.; Ma, S.; Wang, C.; Xu, J.; Zhu, M. Polymer complexation by hydrogen bonding at the interface. Aust. J. Chem. 2014, 67(1), 11–21.

    Article  CAS  Google Scholar 

  55. Su, C.; Sun, J.; Zhang, X.; Shen, D.; Yang, S. Hydrogen-bonded polymer complex thin film of poly(2-oxazoline) and poly(acrylic acid). Polymers 2017, 9(8), 363.

    Google Scholar 

  56. Yang, S.; Tan, S.; Zhang, Y.; Xu, J.; Zhang, X. Interferometric study onhydrogen-bonded assembly film. Thin Solid Films 2008, 516, 4018–4024.

    Article  CAS  Google Scholar 

  57. Ma, J.; Yang, S.; Li, Y.; Xu, X.; Xu, J. Effect of temperature on build-up and post hydrothermal processing of hydrogen-bonded PVPON/PAA film. Soft Matter 2011, 7(19), 9435–9443.

    Article  CAS  Google Scholar 

  58. Wang, Z.; Xu, J.; Wu, L.; Chen, X.; Yang, S.; Liu, H.; Zhou, X. Dissolution, hydrolysis and crystallization behavior of polyamide 6 in superheated water. Chinese J. Polym. Sci. 2015, 33(9), 1334–1343.

    Article  CAS  Google Scholar 

  59. Zhang, Y.; Li, F.; Valenzuela, L. D.; Sammalkorpi, M.; Lutkenhaus, J. L. Effect of water on the thermal transition observed in poly(allylamine hydrochloride)-poly(acrylic acid) complexes. Macromolecules 2016, 49(19), 7563–7570.

    Article  CAS  Google Scholar 

  60. Zhai, L.; Nolte, A. J.; Cohen, R. E.; Rubner, M. F. pH-gated porosity transitions of polyelectrolyte multilayers in confined geometries and their application as tunable bragg reflectors. Macromolecules 2004, 37(16), 6113–6123.

    Article  CAS  Google Scholar 

  61. Yang, S.; Zhang, Y.; Guan, Y.; Tan, S.; Zhang, X.; Cheng, S.; Xu, J. Water uptake behavior of hydrogen-bonded PVPON/PAA LbL film. Soft Matter 2006, 2(8), 699–704.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51373032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Guang Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Ma, SM., Liu, GX. et al. Dewetting Behavior of Hydrogen Bonded Polymer Complex Film under Hydrothermal Condition. Chin J Polym Sci 36, 1036–1042 (2018). https://doi.org/10.1007/s10118-018-2109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2109-8

Keywords

Navigation