Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 9, pp 1036–1042 | Cite as

Dewetting Behavior of Hydrogen Bonded Polymer Complex Film under Hydrothermal Condition

  • Chao Su
  • Song-Mei Ma
  • Geng-Xin Liu
  • Shu-Guang Yang
Article
  • 24 Downloads

Abstract

Hydrogen-bonded polymer complex films with the thickness ranging from 50 nm to 2400 nm were prepared by layer-by-layer (LbL) assembly of poly(2-ethyl-2-oxazoline) (PEOX) and poly(acrylic acid) (PAA). The dewetting behavior of PEOX/PAA films under hydrothermal condition was investigated. It was found that the dewetting occurred at solid-liquid interface, and the typical morphologies such as holes, irregular cellular structure, and droplets were observed. Atomic force microscopy (AFM) revealed the initial rupture of the film. Microscopic Raman and infrared (IR) imaging demonstrated that the PEOX and PAA chains remained association during the dewetting process.

Keywords

Hydrogen-bonding Polymer complex Dewetting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51373032).

Supplementary material

10118_2018_2109_MOESM1_ESM.pdf (779 kb)
Dewetting Behavior of Hydrogen Bonded Polymer Complex Film under Hydrothermal Condition

References

  1. 1.
    Thiele, U. Open questions and promising new fields in dewetting. Eur. Phys. J. E 2003, 12(3), 409–416.CrossRefGoogle Scholar
  2. 2.
    Herminghaus, S.; Brinkmann, M.; Seemann, R. Wetting and dewetting of complex surface geometries. Annu. Rev. Mater. Res. 2008, 38(1), 101–121.CrossRefGoogle Scholar
  3. 3.
    Xue, L.; Han, Y. Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 2011, 36(2), 269–293.CrossRefGoogle Scholar
  4. 4.
    Meredith, J. C.; Smith, A. P.; Karim, A.; Amis, E. J. Combinatorial materials science for polymer thin-film dewetting. Macromolecules 2000, 33(26), 9747–9756.CrossRefGoogle Scholar
  5. 5.
    Koplik, J. Molecular simulations of dewetting. Phys. Rev. Lett. 2000, 84(19), 4401–4404.CrossRefGoogle Scholar
  6. 6.
    Higgins, A. M.; Jones, R. A. L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature 2000, 404(6777), 476–478.CrossRefGoogle Scholar
  7. 7.
    Wang, J. Z.; Zheng, Z. H.; Li, H. W.; Huck, W. T. S.; Sirringhaus, H. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 2004, 3(3), 171–176.CrossRefGoogle Scholar
  8. 8.
    Powell, M. R.; Cleary, L.; Davenport, M.; Shea, K. J.; Siwy, Z. S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotech. 2011, 6(12), 798–802.CrossRefGoogle Scholar
  9. 9.
    Seemann, R.; Herminghaus, S.; Jacobs, K. Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 2001, 13(13), 4925–4938.CrossRefGoogle Scholar
  10. 10.
    van Hameren, R.; Schön, P.; van Buul, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 2006, 314(5804), 1433–1436.CrossRefGoogle Scholar
  11. 11.
    Liu, J. C.; Shang, Y. Y.; Zhang, D. J.; Xie, Z.; Hua, R. X.; Wang, J. J. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting. Chinese J. Polym. Sci. 2017, 35(9), 1043–1050.CrossRefGoogle Scholar
  12. 12.
    Wang, W. C.; Shi, K.; Pan, Y. X.; Peng, C.; Zhao, Z. L.; Liu, W.; Liu, Y. G.; Ji, X. L. Fabrication of polymersomes with controllable morphologies through dewetting W/O/W double emulsion droplets. Chinese J. Polym. Sci. 2016, 34(4), 475–482.CrossRefGoogle Scholar
  13. 13.
    Brochard-Wyart, F. “Droplet: capillarity and wetting”. Soft Matter Phys., Spinger-Verlag Berlin Heidelberg, 1999, p. 29Google Scholar
  14. 14.
    Vrij, A. Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 1966, 42, 23–33.CrossRefGoogle Scholar
  15. 15.
    Redon, C.; Brochardwyart, F.; Rondelez, F. Dynamics of dewetting. Phys. Rev. Lett. 1991, 66(66), 715–718.CrossRefGoogle Scholar
  16. 16.
    Reiter, G. Dewetting of thin polymer-films. Phys. Rev. Lett. 1992, 68(1), 75–78.CrossRefGoogle Scholar
  17. 17.
    Reiter, G. Dewetting as a probe of polymer mobility in thin films. Macromolecules 1994, 27(11), 3046–3052.CrossRefGoogle Scholar
  18. 18.
    Mukherjee, R.; Sharma, A. Instability, self-organization and pattern formation in thin soft films. Soft Matter 2015, 11(45), 8717–8740.CrossRefGoogle Scholar
  19. 19.
    Mitlin, V. S. Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid Interface Sci. 1993, 156(2), 491–497.CrossRefGoogle Scholar
  20. 20.
    Redon, C.; Brzoska, J. B.; Brochardwyart, F. Dewetting and slippage of microscopic polymer films. Macromolecules 1994, 27(2), 468–471.CrossRefGoogle Scholar
  21. 21.
    Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251–1254.CrossRefGoogle Scholar
  22. 22.
    Roy, S.; Mukherjee, R. Ordered to isotropic morphology transition in pattern-directed dewetting of polymer thin films on substrates with different feature heights. ACS Appl. Mater. Interfaces 2012, 4(10), 5375–5385.CrossRefGoogle Scholar
  23. 23.
    Seemann, R.; Herminghaus, S.; Jacobs, K. Dewetting patterns and molecular forces: areconciliation. Phys. Rev. Lett. 2001, 86(24), 5534–5537.CrossRefGoogle Scholar
  24. 24.
    Bhandaru, N.; Das, A.; Salunke, N.; Mukherjee, R. Ordered alternating binary polymer nanodroplet array by sequential spin dewetting. Nano Lett. 2014, 14(12), 7009–7016.CrossRefGoogle Scholar
  25. 25.
    Bhandaru, N.; Goohpattader, P. S.; Faruqui, D.; Mukherjee, R.; Sharma, A. Solvent-vapor-assisted dewetting of prepatterned thin polymer films: control of morphology, order, and pattern miniaturization. Langmuir 2015, 31(10), 3203–3214.CrossRefGoogle Scholar
  26. 26.
    Bhandaru, N.; Das, A.; Mukherjee, R. Confinement induced ordering in dewetting of ultra-thin polymer bilayers on nanopatterned substrates. Nanoscale 2016, 8(2), 1073–1087.CrossRefGoogle Scholar
  27. 27.
    Chen, D.; Zhao, W.; Wei, D.; Russell, T. P. Dewetting on curved interfaces: a simple route to polymer nanostructures. Macromolecules 2011, 44(20), 8020–8027.CrossRefGoogle Scholar
  28. 28.
    Xia, T.; Ogawa, H.; Inoue, R.; Nishida, K.; Yamada, N. L.; Li, G.; Kanaya, T. Dewetting process of deuterated polystyrene and poly(vinyl methylether) blend thin films via phase separation. Macromolecules 2013, 46(11), 4540–4547.CrossRefGoogle Scholar
  29. 29.
    Li, S. J.; Zhang, W. X.; Jiang, F.; Lu, Y. Y.; Shi, T. F.; An, L. J. Dynamics of hole growing in polymer thin films during dewetting. Acta Polymerica Sinica (in Chinese) 2014, 24(9), 1174–1181.Google Scholar
  30. 30.
    Che, J.; Jawaid, A.; Grabowski, C. A.; Yi, Y.; Louis, G. C.; Ramakrishnan, S.; Vaia, R. A. Stability of polymer grafted nanoparticle monolayers: impact of architecture and polymer-substrate interactions on dewetting. ACS Macro Lett. 2016, 5(12), 1369–1374.CrossRefGoogle Scholar
  31. 31.
    Chandran, S.; Reiter, G. Transient cooperative processes in dewetting polymer melts. Phys. Rev. Lett. 2016, 116(8), 088301.CrossRefGoogle Scholar
  32. 32.
    Liu, P.; Huang, X.; Zhou, R.; Berne, B. J. Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 2005, 437(7055), 159–162.CrossRefGoogle Scholar
  33. 33.
    Farrell, R. A.; Kehagias, N.; Shaw, M. T.; Reboud, V.; Zelsmann, M.; Holmes, J. D.; Torres, C. M. S.; Morris, M. A. Surface-directed dewetting of a block copolymer for fabricating highly uniform nanostructured microdroplets and concentric nanorings. ACS Nano 2011, 5(2), 1073–1085.CrossRefGoogle Scholar
  34. 34.
    Besancon, B. M.; Green, P. F. Dewetting dynamics in miscible polymer-polymer thin film mixtures. J. Chem. Phys. 2007, 126(22), 224903.CrossRefGoogle Scholar
  35. 35.
    Ma, M.; He, Z.; Yang, J.; Wang, Q.; Chen, F.; Wang, K.; Zhang, Q.; Deng, H.; Fu, Q. Vertical phase separation and liquid-liquid dewetting of thin PS/PCL blend films during spin coating. Langmuir 2011, 27(3), 1056–1063.CrossRefGoogle Scholar
  36. 36.
    Merola, F.; Grilli, S.; Coppola, S.; Vespini, V.; Nicola, S. D.; Maddalena, P.; Carfagna, C.; Ferraro, P. Reversible fragmentation and self-assembling of nematic liquid crystal droplets on functionalized pyroelectric substrates. Adv. Funct. Mater. 2012, 22(15), 3097–3097.CrossRefGoogle Scholar
  37. 37.
    Fowlkes, J. D.; Kondic, L.; Diez, J.; Wu, Y.; Rack, P. D. Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 2011, 11(6), 2478–2485.CrossRefGoogle Scholar
  38. 38.
    Krishna, H.; Sachan, R.; Strader, J.; Favazza, C.; Khenner, M.; Kalyanaraman, R. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnolgy 2010, 21(15), 155601.CrossRefGoogle Scholar
  39. 39.
    Péron, N.; Brochard-Wyart, F.; Duval, H. Dewetting of low-viscosity films at solid/liquid interfaces. Langmuir 2012, 28(45), 15844–15852.CrossRefGoogle Scholar
  40. 40.
    Verma, A.; Sharma, A. Enhanced self-organized dewetting of ultrathin polymer films under water-organic solutions: fabrication of sub-micrometer spherical lens arrays. Adv. Mater. 2010, 22(46), 5306–5309.CrossRefGoogle Scholar
  41. 41.
    Verma, A.; Sharma, A. Submicrometer pattern fabrication by intensification of instability in ultrathin polymer films under a water-solvent mix. Macromolecules 2011, 44(12), 4928–4935.CrossRefGoogle Scholar
  42. 42.
    Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277(5330), 1232–1237.CrossRefGoogle Scholar
  43. 43.
    Borges, J.; Mano, J. F. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 2014, 114(18), 8883–8942.CrossRefGoogle Scholar
  44. 44.
    Richardson, J. J.; Bjornmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348(6233), aaa2491.CrossRefGoogle Scholar
  45. 45.
    Zhang, L.; Zheng, M.; Liu, X.; Sun, J. Layer-by-layer assembly of salt-containing polyelectrolyte complexes for the fabrication of dewetting-induced porous coatings. Langmuir 2011, 27(4), 1346–1352.CrossRefGoogle Scholar
  46. 46.
    Shim, B. S.; Podsiadlo, P.; Lilly, D.G.; Agarwal, A.; Lee, J.; Tang, Z.; Ho, S.; Ingle, P.; Paterson, D.; Lu, W.; Kotov, N. A. Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Lett. 2007, 7(11), 3266–3273.CrossRefGoogle Scholar
  47. 47.
    Cao, Y. Fluorescence staining and confocal laser scanning microscopy study of hydrogen-bonded poly(vinylpyrrolidone)/poly(acrylic acid) film. Colloids Surf. A 2011, 392(1), 83–87.CrossRefGoogle Scholar
  48. 48.
    Yang, S.; Li, Y.; Li, X.; Li, Y.; Zhang, X.; Xu, J. Patterning of hydrogen-bonded assembly film through ionization in vapor. Thin Solid Films 2009, 517(9), 3024–3027.CrossRefGoogle Scholar
  49. 49.
    Ma, S.; Qi, X.; Cao, Y.; Yang, S.; Xu, J. Hydrogen bond detachment in polymer complexes. Polymer 2013, 54(20), 5382–5390.CrossRefGoogle Scholar
  50. 50.
    Decher, G.; Hong, J. D. Buildup of ultrathin multilayer films by a self-assembly process (1), consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol. Symposia 1991, 46(11), 321–327.CrossRefGoogle Scholar
  51. 51.
    Stockton, W. B.; Rubner, M. F. Molecular-level processing of conjugated polymers. 4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 1997, 30(9), 2717–2725.CrossRefGoogle Scholar
  52. 52.
    Wang, L.; Wang, Z.; Zhang, X.; Shen, J.; Chi, L.; Fuchs, H. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun. 1997, 18(6), 509–514.CrossRefGoogle Scholar
  53. 53.
    Kharlampieva, E.; Sukhishvili, S. A. Hydrogen-bonded layer-by-layer polymer films. Polym. Rev. 2006, 46(4), 377–395.Google Scholar
  54. 54.
    Yang, S.; Ma, S.; Wang, C.; Xu, J.; Zhu, M. Polymer complexation by hydrogen bonding at the interface. Aust. J. Chem. 2014, 67(1), 11–21.CrossRefGoogle Scholar
  55. 55.
    Su, C.; Sun, J.; Zhang, X.; Shen, D.; Yang, S. Hydrogen-bonded polymer complex thin film of poly(2-oxazoline) and poly(acrylic acid). Polymers 2017, 9(8), 363.Google Scholar
  56. 56.
    Yang, S.; Tan, S.; Zhang, Y.; Xu, J.; Zhang, X. Interferometric study onhydrogen-bonded assembly film. Thin Solid Films 2008, 516, 4018–4024.CrossRefGoogle Scholar
  57. 57.
    Ma, J.; Yang, S.; Li, Y.; Xu, X.; Xu, J. Effect of temperature on build-up and post hydrothermal processing of hydrogen-bonded PVPON/PAA film. Soft Matter 2011, 7(19), 9435–9443.CrossRefGoogle Scholar
  58. 58.
    Wang, Z.; Xu, J.; Wu, L.; Chen, X.; Yang, S.; Liu, H.; Zhou, X. Dissolution, hydrolysis and crystallization behavior of polyamide 6 in superheated water. Chinese J. Polym. Sci. 2015, 33(9), 1334–1343.CrossRefGoogle Scholar
  59. 59.
    Zhang, Y.; Li, F.; Valenzuela, L. D.; Sammalkorpi, M.; Lutkenhaus, J. L. Effect of water on the thermal transition observed in poly(allylamine hydrochloride)-poly(acrylic acid) complexes. Macromolecules 2016, 49(19), 7563–7570.CrossRefGoogle Scholar
  60. 60.
    Zhai, L.; Nolte, A. J.; Cohen, R. E.; Rubner, M. F. pH-gated porosity transitions of polyelectrolyte multilayers in confined geometries and their application as tunable bragg reflectors. Macromolecules 2004, 37(16), 6113–6123.CrossRefGoogle Scholar
  61. 61.
    Yang, S.; Zhang, Y.; Guan, Y.; Tan, S.; Zhang, X.; Cheng, S.; Xu, J. Water uptake behavior of hydrogen-bonded PVPON/PAA LbL film. Soft Matter 2006, 2(8), 699–704.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chao Su
    • 1
  • Song-Mei Ma
    • 1
  • Geng-Xin Liu
    • 2
  • Shu-Guang Yang
    • 1
  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and EngineeringDonghua UniversityShanghaiChina
  2. 2.Department of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations