Skip to main content
Log in

Changes of the Molecular Mobility of Poly(ε-caprolactone) upon Drawing, Studied by Dielectric Relaxation Spectroscopy

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Dielectric relaxation spectroscopy (DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases. The activation energy of the α process, which corresponds to the dynamic glass transition, increases upon drawing. The enlarged gap between the activation energies of the α process and the β process results in a change of continuity at the crossover between the high temperature a process and the α and β processes. At low drawing ratios the a process connects with the β process, while at the highest drawing ratio in our measurements, the a process is continuous with the α process. This is consistent with X-ray diffraction results that indicate that upon drawing the polymer chains in the amorphous part align and densify upon drawing. As the draw ratio increases, the α relaxation broadens and decreases its intensity, indicating an increasing heterogeneity. We observed slope changes in the α traces, when the temperature decreases below that at which τ α ≈ 1 s. This may indicate the glass transition from the ‘rubbery’ state to the non-equilibrium glassy state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Omid, Y.; Hamid, G. Development of a simple model to characterize the complex constrained polymer chains in polymer nanocomposites at the interphase of amorphous/semicrystalline ethylene vinyl acetate and nanosheets. J. Compos. Mater. 2016, 51(2), 179–186.

    Google Scholar 

  2. Perez-de-Eulate, N. G.; Di Lisio, V.; Cangialosi, D. Glass Transition and Molecular Dynamics in Polystyrene Nanospheres by Fast Scanning Calorimetry. ACS Macro Lett. 2017, 6(6), 859–863.

    Article  CAS  Google Scholar 

  3. Sharma, R. P.; Green, P. F. Role of “Hard” and “soft” confinement on polymer dynamics at the nanoscale. ACS Macro Lett. 2017, 6(9), 908–914.

    Article  CAS  Google Scholar 

  4. Lee, K. H.; Kim, H. Y.; Khil, M. S.; Ra, Y. M.; Lee, D. R. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer. 2003, 44(4), 1287–1294.

    Article  CAS  Google Scholar 

  5. Chen, Z.; Cao, L.; Wang, L.; Zhu, H.; Jiang, H. Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(ε-caprolactone) and gelatin. J. Appl. Polym. Sci. 2013, 127(6), 4225–4232.

    Article  CAS  Google Scholar 

  6. Bernards, D. A.; Bhisitkul, R. B.; Wynn, P.; Steedman, M. R.; Lee, O. T.; Wong, F.; Thoongsuwan, S.; Desai, T. A. Ocular Biocompatibility and Structural Integrity of Micro- and Nanostructured Poly(caprolactone) Films. J. Ocul. Pharmacol. Th. 2013, 29(2), 249–257.

    Article  CAS  Google Scholar 

  7. Shan, G. F.; Yang, W.; Yang, M. B.; Xie, B. H.; Fu, Q.; Mai, Y. W. Investigation on tensile deformation behavior of semi-crystalline polymers. J. Macromol. Sci. B 2009, 48(7), 799–811.

    Article  CAS  Google Scholar 

  8. Li, H.; Zhou, W.; Ji, Y.; Hong, Z.; Miao, B.; Li, X.; Zhang, J.; Qi, Z.; Wang, X.; Li, L.; Li, Z. M. Spatial distribution of crystal orientation in neck propagation: An in-situ microscopic infrared imaging study on polyethylene. Polymer 2013, 54(2), 972–979.

    Article  CAS  Google Scholar 

  9. Li, J. X.; Cheung, W. L.; Chan, C. M. On deformation mechanisms of β-polypropylene 3. Lamella structures after necking and cold drawing. Polymer 1999, 40(13), 3641–3656.

    Article  CAS  Google Scholar 

  10. Peterlin, A.; Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 1971, 6(6), 490–508.

    Article  CAS  Google Scholar 

  11. Van Aerle, N. A. J. M.; Braam, A. W. M. A structural study on solid state drawing of solution-crystallized ultra-high molecular weight polyethylene. J. Mater. Sci. 1988, 23(12), 4429–4436.

    Article  Google Scholar 

  12. Mcrae, M. A.; Maddams, W. F.; Preedy, J. E. An infra-red spectroscopic and X-ray diffraction study of cold-drawn high density polyethylene samples. J. Mater. Sci. 1976, 11(11), 2036–2044.

    Article  CAS  Google Scholar 

  13. Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature 1978, 272(5650), 226–229.

    Article  CAS  Google Scholar 

  14. Nozue, Y.; Shinohara, Y.; Ogawa, Y.; Takamizawa, T.; Sakurai, T.; Kasahara, T.; Yamaguchi, N.; Yagi, N.; Amemiya, Y. Deformation behavior of banded spherulite during drawing investigated by simultaneous microbeam SAXS-WAXS and POM measurement. Polymer 2010, 51(1), 222–231.

    Article  CAS  Google Scholar 

  15. Li, J. X.; Cheung, W. L. On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer 1998, 39(26), 6935–6940.

    Article  CAS  Google Scholar 

  16. Zhao, Y.; Keroack, D.; Prud¢homme, R. Crystallization under strain and resultant orientation of poly(ε-caprolactone) in miscible blends. Macromolecules 1999, 32(4), 1218–1225.

    Article  CAS  Google Scholar 

  17. Pieruccini, M.; Ezquerra, T. A.; Lanza, M. Phenomenological model for the confined dynamics in semicrystalline polymers: the multiple α relaxation in cold-crystallized poly(ethylene terephthalate). J. Chem. Phys. 2007, 127(10), DOI: 10.1063/1.2771166

    Google Scholar 

  18. Hakme, C.; Stevenson, I.; David, L.; Sixou, B.; Voice, A.; Seytre, G.; Boiteux, G. Molecular mobility in poly(ethylene naphthalene 2,6 dicarboxylate) (PEN) dielectric films. Proceeding of the 2004 IEEE International Conference on Solid Dielectrics. 2004, Vol. 1, 37–40.

    Article  Google Scholar 

  19. Hakme, C.; Stevenson, I.; David, L.; Seytre, G.; Boiteux, G. Effect of orientation and crystallization on dielectric and mechanical relaxations in uniaxially stretched poly(ethylene naphthalene 2,6 dicarboxylate) (PEN) films. J. Non-Cryst. Solids 2006, 352(42-49), 4746–4752.

    Article  CAS  Google Scholar 

  20. Nogales, A.; Denchev, Z.; Šics, I.; Ezquerra, T. A. Influence of the crystalline structure in the segmental mobility of semicrystalline polymers: poly(ethylene naphthalene-2,6-dicarboxylate). Macromoleculs 2000, 33(25), 9367–9375.

    Article  CAS  Google Scholar 

  21. Frűbing, P.; Kremmer, A.; Gerhard-Multhaupt, R.; Spanoudaki, A.; Pissis, P. Relaxation processes at the glass transition in polyamide 11: from rigidity to viscoelasticity. J. Chem. Phys. 2006, 125(21), DOI: 10.1063/1.2360266

    Google Scholar 

  22. Donth, E. The glass transition: relaxation dynamics in liquids and disordered materials, Springer-Verlag Berlin Heidelberg, New York, 2001, p. 199.

    Book  Google Scholar 

  23. Grimau, M.; Laredo, E.; Pérez, Y. M.; Bello, C. A. Study of dielectric relaxation modes in poly(ε-caprolactone): molecular weight, water sorption, and merging effects. J. Chem. Phys. 2001, 114(15), 6417–6425.

    Article  CAS  Google Scholar 

  24. Scönhals, A.; Kremer, F., in “Broadband dielectric spectroscopy” ed. by Kremer, F.; Scönhals, A., Springer-Verlag Berlin Heidelberg, New York, 2003, p. 59.

    Book  Google Scholar 

  25. Alcock, B.; Cabrera, N. O.; Barkoula, N. M.; Raynolds, C. T.; Govaert, L. E.; Peijs, T. The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites. Compos. Sci. Technol. 2007, 67(10), 2061–2070.

    Article  CAS  Google Scholar 

  26. Qiu, Z.; Yang, W.; Ikehara, T.; Nishi, T. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone). Polymer 2005, 46(25), 11814–11819.

    Article  CAS  Google Scholar 

  27. Crescenzi, V.; Manzini, G.; Calzolari, G.; Borri, C. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur. Polym. J. 1972, 8(3), 449–463.

    Article  CAS  Google Scholar 

  28. Bello, A.; Laredo, E.; Grimau, M. Comparison of analysis of dielectric spectra of PCL in the ε* and the M* formalism. J. Non-Cryst. Solids. 2007, 353(47-51), 4283−4287.

    Article  CAS  Google Scholar 

  29. Serra, R. S. I. J.; Ivirico, L. E.; Dueñas, J. M. M.; Balado, A. A.; Ribelles, J. L. G.; Sánchez, M. S. Segmental dynamics in poly(ε-caprolactone)/poly(L-lactide) copolymer networks. J. Polym. Sci., Part B: Polym. Phys. 2009, 47(2), 183–193.

    Article  CAS  Google Scholar 

  30. Lee, H.; Paeng, K.; Swallen, S. F.; Ediger, M. D. Direct measurement of molecular mobility in actively deformed polymer glasses. Science 2009, 323(5911), 231–234.

    Article  CAS  Google Scholar 

  31. Suljovrujić, E. Dielectric studies of molecular β-relaxation in low density polyethylene: the influence of drawing and ionizing radiation. Polymer 2002, 43(22), 5969–5978. (Note: the β and γ relaxations in the reference are the α and β relaxations in this paper, respectively)

    Article  Google Scholar 

  32. Adam, G.; Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 1965, 143(1), 139–146.

    Article  Google Scholar 

  33. Schröter, K.; Unger, R.; Reissig, S.; Garwe, F.; Kahle, S.; Beiner, M.; Donth, E. Dielectric spectroscopy in the αβ splitting region of glass transition in poly(ethyl methacrylate) and poly(n-butyl methacrylate): different evaluation methods and experimental conditions. Macromolecules 1998, 31(25), 8966–8972.

    Article  Google Scholar 

  34. Hansen, C.; Stickel, F.; Berger, T.; Richert, R.; Fischer, E. W. Dynamics of glass-forming liquids. III. Comparing the dielectric α- and β-relaxation of 1-propanol and ο-terphenyl. J. Chem. Phys. 1997, 107(4), 1086–1093.

    Article  CAS  Google Scholar 

  35. Smith, G. D.; Bedrov, D. Relationship between the α- and β-relaxation processes in amorphous polymers: Insight from atomistic molecular dynamics simulations of 1,4-polybutadiene melts and blends. J. Polym. Sci., Part B: Polym. Phys. 2007, 45(6), 627–643.

    Article  CAS  Google Scholar 

  36. Götze, W. in “Liquid, Freezing and the Glass Transition”, ed. by Hansen, J. P.; Levesque, D.; Zinn-Justin, J., North-Hollond, Amsterdam, 1991, p. 287.

    Google Scholar 

  37. Saiter, J. M.; Grenet, J.; Saiter, E. A.; Delbreilh, L. Glass Transition temperature and value of the relaxation time at Tg in vitreous polymers. Macromol. Symp. 2007, 258(1), 152–161.

    Article  CAS  Google Scholar 

  38. Li, J. X.; Cheung, W. L.; Chan, C. M. On deformation mechanisms of β-polypropylene 2. changes of lamellar structure caused by tensile load. Polymer 1999, 40(8), 2089–2102.

    Article  CAS  Google Scholar 

  39. Murthy, N. S.; Minor, H.; Bednarczyk, C. Structure of the amorphous phase in oriented polymers. Macromolecules 1993, 26(7), 1712–1721.

    Article  CAS  Google Scholar 

  40. Liedermann, K. A simple formula for the temperature dependence of the relaxation frequency in glassy systems. Collid. Polym. Sci. 1996, 274(1), 20–26.

    Article  CAS  Google Scholar 

  41. Kremer F.; Huwe A.; Schönhals A.; Różański S. A., in “Broadband dielectric spectroscopy” ed. by Kremer, F.; Scönhals, A., Springer-Verlag Berlin Heidelberg, New York, 2003, p. 171.

    Book  Google Scholar 

  42. Arndt, M.; Stannarius, R.; Groothues, H.; Hempel, E.; Kremer, F. Length Scale of Cooperativity in the Dynamic Glass Transition. Phys. Rev. Lett. 1997, 79(11), 2077–2080.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research forms part of the research programme of the Dutch Polymer Institute (DPI), project#623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XY., Liu, SS., Korobko, A.V. et al. Changes of the Molecular Mobility of Poly(ε-caprolactone) upon Drawing, Studied by Dielectric Relaxation Spectroscopy. Chin J Polym Sci 36, 665–674 (2018). https://doi.org/10.1007/s10118-018-2030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2030-1

Keywords

Navigation