Skip to main content
Log in

Composition and rheology of polyamide-6 obtained by using bi- and tri-functional coupling agents

  • Paper
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A statistical approach is developed, based on a Monte Carlo method, in order to determine the statistical composition of a polyamide-6 sample composed of caprolactam (an AB-type monomer) and of a di-acid (A2 type) or a triacid (A3 type) as coupling agents. For this composition, the linear rheological behavior of these systems is predicted using a tube-based theory. This allows us to show that while coupling agents of type A2 can be seen as flow improver, the effect of branching agents of type A3, depending on the synthesis recipe and the conversion level, can lead either to an increase or to a decrease of the viscosity. By adding specific amount of these agents, we also show that it is possible to obtain materials with the same zero-shear viscosity but with different shear thinning behavior. Furthermore, the polydispersity of linear samples of the same average number molecular weight, M n, is discussed in function of the amount of A2 monomers they contain. Ranging from 2 to 1.5, this difference in polydispersity is expected to have a significant influence on the processing behavior of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steeman, P. and Nijenhuis, A., Polymer, 2010, 51: 2700

    Article  CAS  Google Scholar 

  2. Münstedt, H. and Laun, H.M., Rheol. Acta, 1979, 18: 492

    Article  Google Scholar 

  3. Flory, P.J., J. Am. Chem. Soc., 1941, 63: 3083

    Article  CAS  Google Scholar 

  4. Flory, P.J., J. Am. Chem. Soc., 1941, 63: 3091

    Article  CAS  Google Scholar 

  5. Flory, P.J., Chem. Rev., 1946, 39: 137

    Article  CAS  Google Scholar 

  6. Hillergers, L.T., Kapnistos, M., Slot, J.J.M. and Steeman, P.A.M., Macromol. Theory Simul., 2011, 20: 219

    Article  Google Scholar 

  7. Durand, D. and Bruneau, C.M., Macromolecules, 1979, 12: 1216

    Article  CAS  Google Scholar 

  8. Fradet, A. and Tessier, M., Macromolecules, 2006, 39: 6238

    Article  CAS  Google Scholar 

  9. Huber, T., Pötschke, P., Pompe, G., Hässler, R., Voit, B. and Grutke, S., Macromol. Mater. Eng., 2000, 280/281: 33

    Article  CAS  Google Scholar 

  10. Scholl, M., Kadlecova, Z. and Klok, H.A., Prog. Polym. Sci., 2009, 34: 24

    Article  CAS  Google Scholar 

  11. Dai, L., Huang, N., Tang, Z. and Hungenberg, K.D., J. Appl. Polym. Sci., 2001, 82: 3184

    Article  CAS  Google Scholar 

  12. Han, H.Z.Y., Duckett, R.A., McLeish, T.C.B., Ward, N.J. and Johnson, A.F., Macromolecules, 1998, 31: 1348

    Article  CAS  Google Scholar 

  13. Han, H.Z.Y., Duckett, R.A., McLeish, T.C.B., Ward, N.J. and Johnson, A.F., Polymer, 1997, 38: 1545

    Article  CAS  Google Scholar 

  14. Baumann, F.E., Haeger, H., Novikova, O., Oenbrink, G., Richter, R. and Finke, M., J. Appl. Polym. Sci., 2005, 96: 2413

    Article  CAS  Google Scholar 

  15. Van Ruymbeke, E., Coppola, S., Balacca, L., Righi, S. and Vlassopoulos, D., J. Rheol., 2010, 54: 507

    Article  Google Scholar 

  16. Snijkers, F., van Ruymbeke, E., Lee, P.K.H., Nikopoulou, A., Chang, T., Hadjichristidis, N., Pathak, J. and Vlassopoulos, D., Macromolecules, 2011, 44: 8631

    Article  CAS  Google Scholar 

  17. Van Ruymbeke, E., Vlassopoulos, D., Kapnistos, M., Liu, C.Y. and Bailly, C., Macromolecules, 2009, 43: 525

    Article  Google Scholar 

  18. Van Ruymbeke, E., Keunings, R. and Bailly, C., Journal of Non-newtonian Fluid Mechanics, 2005, 128: 7

    Article  Google Scholar 

  19. Van Ruymbeke, E., Bailly, C., Keunings, R. and Vlassopoulos, D., Macromolecules, 2006, 39: 6248

    Article  Google Scholar 

  20. Van Ruymbeke, E., Muliawan, E.B., Hatzikiriakos, S.G., Watanabe, T., Hirao, A. and Vlassopoulos, D., J. Rheol., 2010, 54: 643

    Article  Google Scholar 

  21. Van Ruymbeke, E., Masubuchi, Y. and Watanabe, H., Macromolecules, 2012, 45: 2085

    Article  Google Scholar 

  22. Marrucci, G., J. Polym. Sci. Polym. Phys. Ed., 1985, 23: 159

    Article  CAS  Google Scholar 

  23. Ball, R.C. and McLeish, T.C.B., Macromolecules, 1989, 22: 1911

    Article  CAS  Google Scholar 

  24. Schwarzl, F.R., Rheol. Acta, 1971, 10: 166

    Article  Google Scholar 

  25. Doi, M. and Edwards, S.F., “The theory of polymer dynamics”, Oxford University Press, New York, 1986

    Google Scholar 

  26. McLeish, T.C.B., Adv. Phys., 2002, 51: 1379

    Article  CAS  Google Scholar 

  27. Dealy, J.M. and Larson, R.G., “Structure and rheology of molten polymers”, Hanser Publishers, Munich, 2006

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. M. Slot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slot, J.J.M., van Ruymbeke, E. & Steeman, P.A.M. Composition and rheology of polyamide-6 obtained by using bi- and tri-functional coupling agents. Chin J Polym Sci 31, 58–70 (2013). https://doi.org/10.1007/s10118-013-1214-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-013-1214-y

Keywords

Navigation