Skip to main content
Log in

Facile fabrication of large scale microtubes with a natural template — Kapok fiber

  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A newly natural fine template, kapok fiber, for microtube preparation was reported. Large scale microtubes with high length/diameter ratio and controllable wall thickness and morphology have been successfully fabricated with this template. It is a wildly available, low-cost, environmental friendly and fine structured natural template for microtubes. Its thin wall thickness is only about 1–2 μm that means the whole template material is tiny and easy for removing. Even there is any residue the amount can be ignored. When the template is covered with a shell component, hollow structured microtube could be obtained by removing the thin inner template, and its shape could be the same as that of the original template (positive copy of the template’s shape). The products have high length/diameter ratio and uniform tubular structure. By further modifying the fabricating methods, facile fabrication not only exists for polypyrrole (PPy) in electrochemical deposition, but also for many other organic and inorganic materials. The surface morphology and wall thickness of the resultant microtubes can be easily modulated by controlling the processing conditions. This natural fiber is predicted to be a fine template for fabricating large scale microtubes with large cavity and high length/diameter ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Service, R.F., Science, 2003, 300: 243

    Article  Google Scholar 

  2. Liu, A.H., Sun, K.N., Yang, J.F. and Zhao, D.M., J. Nanopart. Res., 2008, 10: 1303

    Article  CAS  Google Scholar 

  3. Hoffman, W.P., Phan, H.T. and Wapner, P.G., Mat. Res. Innovat., 1998, 2: 87

    Article  CAS  Google Scholar 

  4. Han, C.C., Lee, J.T., Yang, R.W., Chang, H. and Han, C.H., Chem. Mater., 1999, 11: 1806

    Article  CAS  Google Scholar 

  5. Mitsuhasi, K., Tagami, N., Tanabe, K., Ohkubo, T., Sakai, H., Koishi, M. and Abe, M., Langmuir, 2005, 21: 3659

    Article  Google Scholar 

  6. Yang, X., Wang, L. and Yang, S., Mater. Lett., 2007, 61: 2904

    Article  CAS  Google Scholar 

  7. Colombo, P., Perini, K. and Bernardo, E., J. Am. Ceram. Soc., 2003, 86: 1025

    Article  CAS  Google Scholar 

  8. Schnur, J.M., Science, 1993, 262: 1669

    Article  CAS  Google Scholar 

  9. Kim, J.W., Lee, S.S. and Jung, Y.G., J. Mater. Res., 2005, 20: 409

    Article  Google Scholar 

  10. Kim, J.W., Myoung, S.W., Kim, H.C., Lee, J.H., Jung, Y.G. and Jo, C.Y., Mater. Sci. Eng. A, 2006, 434: 171

    Article  Google Scholar 

  11. Xiong, S., Wang, Q. and Chen, Y., J. Appl. Polym. Sci., 2009, 111: 963

    Article  CAS  Google Scholar 

  12. Imai, H., Matsuta, M., Shimizu, K., Hirashima, H. and Negishi, N., J. Mater. Chem., 2000, 10: 2005

    Article  CAS  Google Scholar 

  13. Davis, S.A., Burkett, S.L., Mendelson, N.H. and Mann, S., Nature, 1997, 385: 420

    Article  CAS  Google Scholar 

  14. Deng, D., Tang, R., Liao, X. and Shi, B., Langmuir, 2008, 24: 368

    Article  CAS  Google Scholar 

  15. Shigapov, A.N., Graham, G.W., McCabe, R.W. and Plummer Jr, H.K., Appl. Catal. A, 2001, 210: 287

    Article  CAS  Google Scholar 

  16. Fujikawa, S. and Kunitake, T., Langmuir, 2003, 19: 6545

    Article  CAS  Google Scholar 

  17. Liu, S. and He, J., J. Am. Ceram. Soc., 2005, 88: 3513

    Article  CAS  Google Scholar 

  18. Mayes, E.L., Vollrath, F. and Mann, S., Adv. Mater., 1998, 10: 801

    Article  CAS  Google Scholar 

  19. Huang, L., Wang, H., Hayashi, C.Y., Tian, B., Zhao, D. and Yan, Y., J. Mater. Chem., 2003, 13: 666

    Article  CAS  Google Scholar 

  20. He, J. and Kunitake, T., Chem. Mater. 2004, 16: 2656

    Article  CAS  Google Scholar 

  21. Lovett, M., Cannizzaro, C., Daheron, L., Messmer, B., Vunjak-Novakovic, G. and Kaplan, D.L., Biomaterials, 2007, 28: 5271

    Article  CAS  Google Scholar 

  22. Xiao, H., Yu, W. and Shi, M., J. Text. Res., 2005, 26: 4

    CAS  Google Scholar 

  23. Kijima, T., Yoshimura, T. and Uota, M., Angew. Chem. Int. Ed., 2004, 43: 228

    Article  CAS  Google Scholar 

  24. Xie, G., Wang, Z. and Cui, Z., Carbon, 2005, 43: 3181

    Article  CAS  Google Scholar 

  25. Noll, W., “Chemistry and technology of silicones”, Academic Press, New York and London, 1968

    Google Scholar 

  26. Aelion, R., Loebel, A. and Eirich, R., J. Am. Chem. Soc., 1950, 72: 5705

    Article  CAS  Google Scholar 

  27. Ouyang, J. and Li, Y., Polymer, 1997, 38: 3997

    Article  CAS  Google Scholar 

  28. Sunmonu, O.K. and Abdullahhi, D., J. Text. Inst., 1981, 2: 273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu  (徐坚).

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. 50821062) and the National 973 Project (No. 2005CCA00800).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Xy., Duan, Ct., Zhao, N. et al. Facile fabrication of large scale microtubes with a natural template — Kapok fiber. Chin J Polym Sci 28, 841–847 (2010). https://doi.org/10.1007/s10118-010-0044-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-010-0044-4

Keywords

Navigation