Knowledge and Information Systems

, Volume 45, Issue 3, pp 645–678 | Cite as

Estimating robustness in large social graphs

  • Fragkiskos D. Malliaros
  • Vasileios Megalooikonomou
  • Christos Faloutsos
Regular Paper

Abstract

Given a large social graph, what can we say about its robustness? Broadly speaking, the property of robustness is crucial in real graphs, since it is related to the structural behavior of graphs to retain their connectivity properties after losing a portion of their edges/nodes. Can we estimate a robustness index for a graph quickly? Additionally, if the graph evolves over time, how this property changes? In this work, we are trying to answer the above questions studying the expansion properties of large social graphs. First, we present a measure that characterizes the robustness properties of a graph and also serves as global measure of the community structure (or lack thereof). We show how to compute this measure efficiently by exploiting the special spectral properties of real-world networks. We apply our method on several diverse real networks with millions of nodes, and we observe interesting properties for both static and time-evolving social graphs. As an application example, we show how to spot outliers and anomalies in graphs over time. Finally, we examine how graph generating models that mimic several properties of real-world graphs and behave in terms of robustness dynamics.

Keywords

Network robustness Expansion properties Temporal evolution Graph generating models Social network analysis  Graph mining 

References

  1. 1.
    Akoglu L, McGlohon M, Faloutsos C (2010) OddBall: spotting anomalies in weighted graphs. In: PAKDD, pp 410–421Google Scholar
  2. 2.
    Albert R, Jeong H, Barabasi A-L (1999) Diameter of the world wide web. Nature 401:130–131CrossRefGoogle Scholar
  3. 3.
    Albert R, Jeong H, Barabasi A-L (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382CrossRefGoogle Scholar
  4. 4.
    Anagnostopoulos A, Brova G, Terzi E (2011) Peer and authority pressure in information-propagation models. In: PKDD, pp 76–91Google Scholar
  5. 5.
    Baeza-Yates RA, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley Longman, New YorkGoogle Scholar
  6. 6.
    Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bollobás B, Riordan O (2003) Robustness and vulnerability of scale-free random graphs. Internet Math 1(1):1–35MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Callaway DS, Newman MEJ, Strogatz SH, Watts DJ (2000) Network robustness and fragility: percolation on random graphs. Phys Rev Lett 80(25):5468–5471CrossRefGoogle Scholar
  9. 9.
    Chakrabarti D, Faloutsos C (2012) Graph mining: laws, tools, and case studies. Synthesis lectures on data mining and knowledge discovery. Morgan and Claypool, San RafaelGoogle Scholar
  10. 10.
    Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):1–58CrossRefGoogle Scholar
  11. 11.
    Chung FRK (1997) Spectral graph theory. CBMS, regional conference series in mathematics, no. 92. AMSGoogle Scholar
  12. 12.
    Cohen R, Havlin S (2010) Complex networks: structure, robustness and function. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. 13.
    DBLP Bibliography Server (2006). http://dblp.uni-trier.de/xml/
  14. 14.
    Erdös P, Renyí A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61MATHGoogle Scholar
  15. 15.
    Estrada E, Rodríguez-Velázquez JA (2005) Subgraph centrality in complex networks. Phys Rev E 71(5):056103MathSciNetCrossRefGoogle Scholar
  16. 16.
    Estrada E (2006) Spectral scaling and good expansion properties in complex networks. Europhys Lett 73(4):649–655MathSciNetCrossRefGoogle Scholar
  17. 17.
    Estrada E (2006) Network robustness to targeted attacks. The interplay of expansibility and degree distribution. Eur Phys J B 52:563–574CrossRefMATHGoogle Scholar
  18. 18.
    Faloutsos M, Faloutsos P, Faloutsos C (1999) On power–law relationships of the Internet topology. In: SIGCOMM, pp 251–262Google Scholar
  19. 19.
    Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174MathSciNetCrossRefGoogle Scholar
  20. 20.
    Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATHGoogle Scholar
  21. 21.
    Hoory S, Linial N, Wigderson A (2006) Expander graphs and their applications. Bull Am Math Soc 43:439–561MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
  23. 23.
    Kumar R, Novak J, Tomkins A (2006) Structure and evolution of online social networks. In: KDD, pp 611–617Google Scholar
  24. 24.
    Lefevre K, Terzi E (2010) GraSS: Graph structure summarization. In: SDM, pp 454–465Google Scholar
  25. 25.
    Leskovec J, Lang K, Dasgupta A, Mahoney M (2009) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math 6(1):29–123MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C (2010) Kronecker graphs: an approach to modeling networks. J Mach Learn Res 11:985–1042MathSciNetMATHGoogle Scholar
  27. 27.
    Leskovec J, Huttenlocher D, Kleinberg J (2010) Predicting positive and negative links in online social networks. In: WWW, pp 641–650Google Scholar
  28. 28.
    Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD, pp 177–187Google Scholar
  29. 29.
    Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1):1–41Google Scholar
  30. 30.
    Maiya AS, Berger-Wolf TY (2010) Expansion and search in networks. In: CIKM, pp 239–248Google Scholar
  31. 31.
    Malliaros FD, Megalooikonomou V, Faloutsos C (2012) Fast robustness estimation in large social graphs: communities and anomaly detection. In: SDM, pp 942–953Google Scholar
  32. 32.
    Malliaros FD, Vazirgiannis Michalis (2013) Clustering and community detection in directed networks: a survey. Phys Rep 533(4):95–142MathSciNetCrossRefGoogle Scholar
  33. 33.
    Maserrat H, Pei J (2010) Neighbor query friendly compression of social networks. In: KDD, pp 533–542Google Scholar
  34. 34.
    Mathioudakis M, Bonchi F, Castillo C, Gionis A, Ukkonen A (2011) Sparsification of influence networks. In: KDD, pp 529–537Google Scholar
  35. 35.
    McGlohon M, Akoglu L, Faloutsos C (2008) Weighted graphs and disconnected components: patterns and a generator. In: KDD, pp 524–532Google Scholar
  36. 36.
    Mihail M, Papadimitriou C, Saberi A (2011) On certain connectivity properties of the Internet topology. In: FOCS, pp 28–35Google Scholar
  37. 37.
    Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and analysis of online social networks. In: IMC, pp 29–42Google Scholar
  38. 38.
    Mohar B (1989) Isoperimetric number of graphs. J Comb Theor B 47(3):274–291MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036122CrossRefGoogle Scholar
  41. 41.
    Newman MEJ (2006) Finding community structure in networks using the eigenvector of matrices. Phys Rev E 74(3):036104MathSciNetCrossRefGoogle Scholar
  42. 42.
    Newman MEJ (2006) Modularity and community structure in networks. PNAS 103(23):8577–8582CrossRefGoogle Scholar
  43. 43.
    Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Technical Report, Stanford InfoLabGoogle Scholar
  44. 44.
    Richardson M, Agrawal R, Domingos P (2003) Trust management for the semantic web. In: ISWC, pp 351–368Google Scholar
  45. 45.
    Sala A, Cao L, Wilson C, Zablit R, Zheng H, Zhao BY (2010) Measurement-calibrated graph models for social network experiments. In: WWW, pp 861–870Google Scholar
  46. 46.
    Satuluri V, Parthasarathy S (2009) Scalable graph clustering using stochastic flows: applications to community. discovery. In: KDD, pp 737–746Google Scholar
  47. 47.
    Seshadhri C, Pinar A, Kolda TG (2013) An in-depth analysis of stochastic Kronecker graphs. JACM 60(2):13:1–13:32MathSciNetCrossRefGoogle Scholar
  48. 48.
    Toivonen H, Zhou F, Hartikainen A, Hinkka A (2011) Compression of weighted graphs. In: KDD, pp 965–973Google Scholar
  49. 49.
    Tsourakakis CE (2008) Fast counting of triangles in large real networks without counting: algorithms and laws. In: ICDM, pp 608–617Google Scholar
  50. 50.
    Tsourakakis CE (2011) Counting triangles in real-world networks using projections. Knowl Inf Syst 26:501–520CrossRefGoogle Scholar
  51. 51.
    Viswanath B, Mislove A, Cha M, Gummadi KP (2009) On the evolution of user interaction in Facebook. In: WOSN, pp 37–42Google Scholar
  52. 52.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(684):440–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Fragkiskos D. Malliaros
    • 1
    • 5
  • Vasileios Megalooikonomou
    • 2
    • 3
  • Christos Faloutsos
    • 4
  1. 1.Computer Science LaboratoryÉcole PolytechniquePalaiseauFrance
  2. 2.Department of Computer Engineering and InformaticsUniversity of PatrasRioGreece
  3. 3.Center for Data Analytics and Biomedical InformaticsTemple UniversityPhiladelphiaUSA
  4. 4.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  5. 5.Laboratoire d’Informatique (LIX)PalaiseauFrance

Personalised recommendations