Skip to main content
Log in

The Simultaneous Fractional Dimension of Graph Families

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

For a connected graph G with vertex set V, let RG{x, y} = {zV: dG(x, z) ≠ dG(y, z)} for any distinct x, yV, where dG(u, w) denotes the length of a shortest uw-path in G. For a real-valued function g defined on V, let g(V) = ∑sVg(s). Let \({\cal C} = \{{G_1},{G_2}, \ldots ,{G_k}\} \) be a family of connected graphs having a common vertex set V, where k ≥ 2 and ∣V∣≥ 3. A real-valued function h: V → [0, 1] is a simultaneous resolving function of \({\cal C}\) if h(RG{x, y}) ≥ 1 for any distinct vertices x, yV and for every graph \(G \in {\cal C}\). The simultaneous fractional dimension, \({\rm{S}}{{\rm{d}}_f}({\cal C})\), of \({\cal C}\) is min{h(V): h is a simultaneous resolving function of \({\cal C}\)}. In this paper, we initiate the study of the simultaneous fractional dimension of a graph family. We obtain \({\max _{1 \le i \le k}}\{{\dim _f}({G_i})\} \le {\rm{S}}{{\rm{d}}_f}({\cal C}) \le \min \{\sum\nolimits_{i = 1}^k {{{\dim}_f}({G_i}),{{|V|} \over 2}} \), where both bounds are sharp. We characterize \({\cal C}\) satisfying \({\rm{S}}{{\rm{d}}_f}({\cal C}) = 1\), examine \({\cal C}\) satisfying \({\rm{S}}{{\rm{d}}_f}({\cal C}) = {{|V|} \over 2}\), and determine \({\rm{S}}{{\rm{d}}_f}({\cal C})\) when \({\cal C}\) is a family of vertex-transitive graphs. We also obtain some results on the simultaneous fractional dimension of a graph and its complement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arumugam, S., Mathew, V.: The fractional metric dimension of graphs. Discrete Math., 312, 1584–1590 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arumugam, S., Mathew, V., Shen, J.: On fractional metric dimension of graphs. Discrete Math. Algorithms Appl., 5, 1350037 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications, North-Holland, Amsterdam, 1976

    Book  MATH  Google Scholar 

  4. Brigham, R. C., Dutton, R. D.: Factor domination in graphs. Discrete Math., 86, 127–136 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Currie, J., Oellermann, O. R.: The metric dimension and metric independence of a graph. J. Combin. Math. Combin. Comput., 39, 157–167 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Feng, M., Lv, B., Wang, K: On the fractional metric dimension of graphs. Discrete Appl. Math., 170, 55–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979

    MATH  Google Scholar 

  8. Harary, F., Melter, R. A.: On the metric dimension of a graph. Ars Combin., 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Hernando, C., Mora, M., Pelayo, I. M., et al.: Extremal graph theory for metric dimension and diameter. Electron. J. Combin., 17, #R30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kang, C. X.: On the fractional strong metric dimension of graphs. Discrete Appl. Math., 213, 153–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kang, C. X., Peterin, I., Yi, E.: On the simultaneous metric dimension of a graph and its complement. submitted

  12. Kang, C. X., Yi, E.: The fractional strong metric dimension of graphs. In: Combinatorial Optimization and Applications, Lecture Notes in Comput. Sci., Vol. 8287, Springer, Cham, 2013, 84–95

    Chapter  Google Scholar 

  13. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math., 70, 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ramírez–Cruz, Y., Oellermann, O. R., Rodríguez–Velázquez, J. A.: The simultaneous metric dimension of graph families. Discrete Appl. Math., 198, 241–250 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Scheinerman, E. R., Ullman, D. H.: Fractional Graph Theory: A Rational Approach to the Theory of Graphs, John Wiley & Sons, New York, 1997

    MATH  Google Scholar 

  16. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res., 29, 383–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Slater, P. J.: Leaves of trees. Congr. Numer., 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Yi, E.: The fractional metric dimension of permutation graphs. Acta Math. Sin., Engl. Ser., 31, 367–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for some helpful comments which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunjeong Yi.

Additional information

Supported by US-Slovenia Bilateral Collaboration Grant (BI-US/19-21-077)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, C.X., Peterin, I. & Yi, E. The Simultaneous Fractional Dimension of Graph Families. Acta. Math. Sin.-English Ser. 39, 1425–1441 (2023). https://doi.org/10.1007/s10114-023-1205-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-1205-z

Keywords

MR(2010) Subject Classification

Navigation