Skip to main content
Log in

The fractional metric dimension of permutation graphs

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Let G = (V (G),E(G)) be a graph with vertex set V (G) and edge set E(G). For two distinct vertices x and y of a graph G, let R G {x, y} denote the set of vertices z such that the distance from x to z is not equal to the distance from y to z in G. For a function g defined on V (G) and for UV (G), let g(U) = Σ sU g(s). A real-valued function g: V (G) → [0, 1] is a resolving function of G if g(R G {x, y}) ≥ 1 for any two distinct vertices x, y ∈ V (G). The fractional metric dimension dim f (G) of a graph G is min{g(V (G)): g is a resolving function of G}. Let G 1 and G 2 be disjoint copies of a graph G, and let σ: V (G 1) → V (G 2) be a bijection. Then, a permutation graph G σ = (V, E) has the vertex set V = V (G 1) ∪ V (G 2) and the edge set E = E(G 1) ∪ E(G 2) ∪ {uv | v = σ(u)}. First, we determine dimf (T) for any tree T. We show that \(1 < \dim _f (G_\sigma ) \leqslant \tfrac{1} {2}(|V(G)| + |S(G)|) \) for any connected graph G of order at least 3, where S(G) denotes the set of support vertices of G. We also show that, for any ɛ > 0, there exists a permutation graph G σ such that dim f (G σ) - 1 < ε. We give examples showing that neither is there a function h 1 such that dim f (G) < h 1(dim f (G σ)) for all pairs (G, σ), nor is there a function h 2 such that h 2(dim f (G)) > dim f (G σ)) for all pairs (G, σ). Furthermore, we investigate dim f (G σ)) when G is a complete k-partite graph or a cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arumugam, S., Mathew, V.: The fractional metric dimension of graphs. Discrete Math., 312, 1584–1590 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arumugam, S., Mathew, V., Shen, J.: On fractional metric dimension of graphs. Discrete Math. Algorithms Appl., 5, 1350037 (2013)

    Article  MathSciNet  Google Scholar 

  3. Balbuena, C., Marcote, X., García-Vázquez, P.: On restricted connectivities of permutation graphs. Networks, 45, 113–118 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beerliova, Z., Eberhard, F., Erlebach, T., et al.: Network discovery and verification. IEEE J. Sel. Areas Commun., 24, 2168–2181 (2006)

    Article  Google Scholar 

  5. Chartrand, G., Eroh, L., Johnson, M. A., et al.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105, 99–113 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincare (Sect. B), 3, 433–438 (1967)

    MATH  MathSciNet  Google Scholar 

  7. Chvátal, V.: Mastermind. Combinatorica, 3, 325–329 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Currie, J., Oellermann, O. R.: The metric dimension and metric independence of a graph. J. Combin. Math. Combin. Comput., 39, 157–167 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Fehr, M., Gosselin, S., Oellermann, O. R.: The metric dimension of Cayley digraphs. Discrete Math., 306, 31–41 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng, M., Lv, B., Wang, K.: On the fractional metric dimension of graphs. Discrete Appl. Math., 170, 55–63 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feng, M., Wang, K.: On the metric dimension and fractional metric dimension of the hierarchical product of graphs. Appl. Anal. Discrete Math., 7, 302–313 (2013)

    Article  MathSciNet  Google Scholar 

  12. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, New York, 1979

    MATH  Google Scholar 

  13. Gu, W.: On upper bound of diameters of permutation graphs. Congr. Numer., 121, 223–230 (1996)

    MATH  MathSciNet  Google Scholar 

  14. Gu, W.: On diameter of permutation graphs. Networks, 33, 161–166 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hallaway, M., Kang, C. X., Yi, E.: On metric dimension of permutation graphs. J. Comb. Optim., 28(4), 814–826 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Harary, F., Melter, R. A.: On the metric dimension of a graph. Ars Combin., 2, 191–195 (1976)

    MATH  MathSciNet  Google Scholar 

  17. Kang, C. X., Yi, E.: The fractional strong metric dimension of graphs. Lecture Notes in Comput. Sci., 8287, 84–95 (2013)

    Article  MathSciNet  Google Scholar 

  18. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math., 70, 217–229 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Scheinerman, E. R., Ullman, D. H.: Fractional Graph Theory: A Rational Approach to the Theory of Graphs, John Wiley & Sons, New York, 1997

    MATH  Google Scholar 

  20. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res., 29, 383–393 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Slater, P. J.: Leaves of trees. Congr. Numer., 14, 549–559 (1975)

    MathSciNet  Google Scholar 

  22. Yi, E.: On the strong metric dimension of permutation graphs. J. Combin. Math. Combin. Comput., 90, 39–58 (2014)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunjeong Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, E. The fractional metric dimension of permutation graphs. Acta. Math. Sin.-English Ser. 31, 367–382 (2015). https://doi.org/10.1007/s10114-015-4160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-015-4160-5

Keywords

MR(2010) Subject Classification

Navigation