Skip to main content
Log in

A Carleson Problem for the Boussinesq Operator

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we show that the Boussinesq operator \({{\cal B}_t}f\) converges pointwise to its initial data fHs(ℝ) as t → 0 provided \(s \ge {1 \over 4}\)—more precisely—on one hand, by constructing a counterexample in ℝ we discover that the optimal convergence index \({s_{c,1}} = {1 \over 4}\); on the other hand, we find that the Hausdorff dimension of the divergence set for \({{\cal B}_t}f\) is

$${\alpha _{1,{\cal B}}}\left( s \right) = \left\{ {\matrix{{1 - 2s,} \hfill & {{\rm{as}}\,\,{1 \over 4} \le s \le {1 \over 2};} \hfill\cr {1,} \hfill & {{\rm{as}}\,\,0 > s > {1 \over 4}.} \hfill\cr} } \right.$$

Moreover, a higher dimensional lift was also obtained for f being radial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D. R.: A note on Choquet integrals with respect to Hausdorff capacity. In: Function Spaces and Applications, Proc. Lund 1986, Lecture Notes in Math., 1302, Springer-Verlag, Berlin, 115–124, 1988

    Google Scholar 

  2. Barcelo, J. A., Bennett, J., Carbery, A., et al.: On the dimension of divergence sets of dispersive equations. Math. Ann., 349(3), 599–622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Béthuel, F., Gravejat, P., Saut, J. C.: Travelling waves for the Gross-Pitaevskii equation. II. Comm. Math. Phys., 285(2), 567–651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Some new estimates on oscillatory integrals. In: Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., Vol. 42, Princeton University Press, Princeton, NJ, 83–112, 1995

    Chapter  Google Scholar 

  5. Bourgain, J.: On the Schrödinger maximal function in higher dimension. Proc. Steklov Inst. Math., 280(1), 46–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: A note on the Schrödinger maximal function. J. Anal. Math., 130, 393–396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl., 17(2), 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  8. Carleson, L.: Some Analytic Problems Related to Statistical Mechanics. In: Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture Notes in Math., 779, Springer, Berlin, 5–45, 1980

    Chapter  Google Scholar 

  9. Cho, C. H., Ko, H.: A note on maximal estimates of generalized Schrödinger equation. arXiv:1809. 03246v1 (2018)

  10. Dahlberg, B. E. J., Kenig, C. E.: A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Harmonic Analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., 908, Springer, Berlin-New York, 205–209, 1982

    Chapter  Google Scholar 

  11. Ding, Y., Niu, Y.: Global L2 estimates for a class maximal operators associated to general dispersive equations. J. Inequal. Appl., 2015, 199, 20 pp. (2015)

    Article  MATH  Google Scholar 

  12. Ding, Y., Niu, Y.: Weighted maximal estimates along curve associated with dispersive equations. Anal. Appl. (Singap.), 15(2), 225–240 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, Y., Niu, Y.: Maximal estimate for solutions to a class of dispersive equation with radial initial value. Front. Math. China, 12(5), 1057–1084 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, X., Guth, L., Li, X.: A sharp Schrödinger maximal estimate in ℝ2. Ann. of Math., 186(2), 607–640 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, X., Guth, L., Li, X., Zhang, R.: Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates. Forum Math. Sigma, 6, e14, 18 pp. (2018)

    Article  MATH  Google Scholar 

  16. Du, X., Zhang, R.: Sharp L2 estimate of Schrödinger maximal function in higher dimensions. Ann. of Math., 189(3), 837–861 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fetter, A. L., Svidzinsky, A. A.: Vortices in a trapped dilute Bose-Einstein condensate. J. Phys. Condens. Matter, 13, 135–194 (2001)

    Article  MATH  Google Scholar 

  18. Gérard, P.: The Cauchy problem for the Gross-Pitaevskii equation. Ann. Inst. H. Poincaré. Anal. Non Linéaire, 23(5), 765–779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, Z., Hani, Z., Nakanishi, K.: Scattering for the 3D Gross-Pitaevskii equation. Comm. Math. Phys., 359(1), 265–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gustafson, S., Nakanishi, K., Tsai, T. P.: Scattering for the Gross-Pitaevskii equation. Math. Res. Lett., 13(2), 273–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gustafson, S., Nakanishi, K., Tsai, T. P.: Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions. Ann. Henri Poincaré, 8(7), 1303–1331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gustafson, S., Nakanishi, K., Tsai, T. P.: Scattering theory for the Gross-Pitaevskii equation in three dimensions. Commun. Contemp. Math., 11(4), 657–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lan, S., Li, T., Niu, Y.: Dimension of divergence sets for dispersive equation. Front. Math. China, 15(2), 317–331 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, S.: On pointwise convergence of the solutions to Schrödinger equations in ℝ2. Int. Math. Res. Not., 2006, Art. ID 32597, 21 pp. (2006)

  25. Lucà, R., Rogers, K.: Coherence on fractals versus pointwise convergence for the Schrödinger equation. Comm. Math. Phys., 351(1), 341–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lucà, R., Rogers, K.: A note on pointwise convergence for the Schrödinger equation. Math. Proc. Cambridge Philos. Soc., 166(2), 209–218 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lucaà, R., Rogers, K.: Average decay for the Fourier transform of measures with applications. J. Eur. Math. Soc., 21(2), 465–506 (2019)

    Article  MathSciNet  Google Scholar 

  28. Miao, C., Yang, J., Zheng, J.: An improved maximal inequality for 2D fractional order Schröodinger operators. Studia Math., 230(2), 121–165 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Mouckenhoupt, B.: Weighted norm inequalities for the Fourier transform. Trans. Amer. Math. Soc., 276(2), 729–742 (1983)

    Article  MathSciNet  Google Scholar 

  30. Moyua, A., Vargas, A., Vega, L.: Schroödinger maximal function and restriction properties of the Fourier transform. Int. Math. Res. Not., 16, 793–815 (1996)

    Article  MATH  Google Scholar 

  31. Niu, Y.: The application of harmonic analysis in estimate for solutions to generalized dispersive equation (in Chinese). Ph.D. Thesis. Beijing Normal University, Beijing, 2015

    Google Scholar 

  32. Sjoögren, P., Sjöolin, P.: Convergence properties for the time-dependent Schröodinger equation. Ann. Acad. Sci. Fenn. Ser. A I Math., 14(1), 13–25 (1989)

    Article  MathSciNet  Google Scholar 

  33. Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J., 55(3), 699–715 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sjölin, P.: Maximal estimates for solutions to the nonelliptic Schrödinger equation. Bull. London Math. Soc., 39(3), 404–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sjöolin, P.: Nonlocalization of operators of Schroödinger type. Ann. Acad. Sci. Fenn. Math., 38(1), 141–147 (2013)

    Article  MathSciNet  Google Scholar 

  36. Sjöolin, P.: On localization of Schröodinger means. arXiv: 1704.00927v1 (2017)

  37. Stein, E. M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton, NJ, 1993

    MATH  Google Scholar 

  38. Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton, NJ, 1971

    MATH  Google Scholar 

  39. Tao, T., Vargas, A.: A bilinear approach to cone multipliers. II. Applications. Geom. Funct. Anal. 10(1), 216–258 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vega, L.: El multiplicador de Schröodinger, la function maximal y los operadores de restriccion (thesis), Ph.D. Thesis, Departamento de Matematicas, Univ. Autónoma de Madrid, Madrid, 1988

    Google Scholar 

  41. Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Amer. Math. Soc., 102(4), 874–878 (1988)

    MathSciNet  MATH  Google Scholar 

  42. Žubrinić, D.: Singular sets of Sobolev functions. C. R. Math. Acad. Sci. Paris, 334(7), 539–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for their time and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Feng Li.

Additional information

The second author is supported by NSFC (Grant No. 12071052) and the Fundamental Research Funds for the Central Universities; The first author is supported by the Research Initiation Fund for Young Teachers of Beijing Technology and Business University (Grant No. QNJJ2021-02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, J.F. A Carleson Problem for the Boussinesq Operator. Acta. Math. Sin.-English Ser. 39, 119–148 (2023). https://doi.org/10.1007/s10114-022-1221-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-1221-4

Keywords

MR(2010) Subject Classification

Navigation