Skip to main content
Log in

Maximal estimate for solutions to a class of dispersive equation with radial initial value

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Consider the general dispersive equation defined by

$$\left\{ {\begin{array}{*{20}{c}} {i{\partial _t}u + \phi \left( {\sqrt { - \Delta } } \right)u = 0,}&{\left( {x,t} \right) \in {\mathbb{R}^n} \times \mathbb{R},} \\ {u\left( {x,0} \right) = f\left( x \right),}&{f \in S\left( {{\mathbb{R}^n}} \right),} \end{array}} \right.$$
((*))

where ϕ(√−Δ) is a pseudo-differential operator with symbol ϕ(|ξ|). In this paper, for ϕ satisfying suitable growth conditions and the radial initial data f in Sobolev space, we give the local and global L q estimate for the maximal operator S ϕ * defined by S ϕ *f(x) = sup0<t<1 |S t,ϕ f(x)|, where S t,ϕ f is the solution of equation (*). These estimates imply the a.e. convergence of the solution of equation (*).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R A, Fournier J J F. Sobolev Spaces. Pure and Applied Mathematics, Vol 140. Amsterdam: Elsevier, 2003

    MATH  Google Scholar 

  2. Bergh J, Löfström J. Interpolation Spaces. Grundlehren Math Wiss, Vol 223, Berlin: Springer-Verlag, 1976

    Book  MATH  Google Scholar 

  3. Bourgain J. A remark on Schrödinger operators. Israel J Math, 1992, 77: 1–16

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain J. On the Schrödinger maximal function in higher dimension. Proc Steklov Inst Math, 2013, 280: 46–60

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain J. A note on the Schrödinger maximal function. J Anal Math, 2016, 130: 393–396

    Article  MathSciNet  MATH  Google Scholar 

  6. Carbery A. Radial Fourier multipliers and associated maximal functions. In: Peral I, Rubio de Francia J L, eds. Recent Progress in Fourier Analysis. North-Holland Math Stud, Vol 111. Amsterdam: North-Holland, 1985, 49–56

    Google Scholar 

  7. Carleson L. Some analytical problems related to statistical mechanics. In: Benedetto J J, ed. Euclidean Harmonic Analysis. Lecture Notes in Math, Vol 779. Berlin: Springer, 1979, 5–45

    Google Scholar 

  8. Cho Y, Lee S. Strichartz estimates in spherical coordinates. Indiana Univ Math J, 2013, 62: 991–1020

    Article  MathSciNet  MATH  Google Scholar 

  9. Cho Y, Lee S, Ozawa T. On small amplitude solutions to the generalized Boussinesq equations. Discrete Contin Dyn Syst, 2007, 17: 691–711

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowling M. Pointwise behavior of solutions to Schrödinger equations. In: Mauceri G, Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 992. Berlin: Springer, 1983, 83–90

    Chapter  Google Scholar 

  11. Dahlberg B, Kenig C. A note on the almost everywhere behaviour of solutions to the Schrödinger equation. In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 205–209

    Google Scholar 

  12. Ding Y, Niu Y. Global L 2 estimates for a class maximal operators associated to general dispersive equations. J Inequal Appl, 2015, 199: 1–21

    MathSciNet  MATH  Google Scholar 

  13. Ding Y, Niu Y. Weighted maximal estimates along curve associated with dispersive equations. Anal Appl (Singap), 2017, 15: 225–240

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding Y, Niu Y. Convergence of solutions of general dispersive equations along curve. Chin Ann Math Ser B (to appear)

  15. Du X, Guth L, Li X. A sharp Schrödinger maximal estimate in R2. Ann of Math, 2017, 186: 607–640

    Article  MATH  Google Scholar 

  16. Frölich J, Lenzmann E. Mean-Field limit of quantum Bose gases and nonlinear Hartree equation. Sémin Équ Dériv Partielles, 2004, 19: 1–26

    MathSciNet  Google Scholar 

  17. Guo Z, Peng L, Wang B. Decay estimates for a class of wave equations. J Func Anal, 2008, 254: 1642–1660

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo Z, Wang Y. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J Anal Math, 2014, 124: 1–38

    Article  MathSciNet  MATH  Google Scholar 

  19. Kenig C, Ponce G, Vega L. Well-posedness of the initial value problem for the Kortewegde Vries equation. J Amer Math Soc, 1991, 4: 323–347

    Article  MathSciNet  MATH  Google Scholar 

  20. Kenig C, Ruiz A. A strong type (2; 2) estimate for a maximal operator associated to the Schrödinger equations. Trans Amer Math Soc, 1983, 280: 239–246

    MathSciNet  MATH  Google Scholar 

  21. Krieger J, Lenzmann E, Raphaël P. Nondispersive solutions to the L 2-critical half-wave equation. Arch Ration Mech Anal, 2013, 209: 61–129

    Article  MathSciNet  MATH  Google Scholar 

  22. Laskin N. Fractional quantum mechanics. Phys Rev E, 2002, 62: 3135–3145

    Article  MathSciNet  Google Scholar 

  23. Lee S. On pointwise convergence of the solutions to Schrödinger equations in R2. Int Math Res Not IMRN, 2006, Art ID 32597: 1–21

    Google Scholar 

  24. Moyua A, Vargas A, Vega L. Schrödinger maximal function and restriction properties of the Fourier transform. Int Math Res Not IMRN, 1996, 16: 703–815

    MATH  Google Scholar 

  25. Muckenhoupt B. Weighted norm inequalities for the Fourier transform. Trans Amer Math Soc, 1983, 276: 729–742

    Article  MathSciNet  MATH  Google Scholar 

  26. Prestini E. Radial functions and regularity of solutions to the Schrödinger equation. Monatsh Math, 1990, 109: 135–143

    Article  MathSciNet  MATH  Google Scholar 

  27. Rogers K. A local smoothing estimate for the Schrödinger equation. Adv Math, 2008, 219: 2105–2122

    Article  MathSciNet  MATH  Google Scholar 

  28. Rogers K, Villarroya P. Global estimates for the Schrödinger maximal operator. Ann Acad Sci Fenn Math, 2007, 32: 425–435

    MathSciNet  MATH  Google Scholar 

  29. Sjölin P. Convolution with oscillating kernels. Indiana Univ Math J, 1981, 30: 47–55

    Article  MathSciNet  MATH  Google Scholar 

  30. Sjölin P. Regularity of Solutions to the Schrödinger equation. Duke Math J, 1987, 55: 699–715

    Article  MathSciNet  MATH  Google Scholar 

  31. Sjölin P. Global maximal estimates for solutions to the Schrödinger equation. Studia Math, 1994, 110: 105–114

    MathSciNet  MATH  Google Scholar 

  32. Sjölin P. Radial functions and maximal estimates for solutions to the Schrödinger equation. J Aust Math Soc Ser A, 1995, 59: 134–142

    Article  MATH  Google Scholar 

  33. Sjölin P. L p maximal estimates for solutions to the Schrödinger equations. Math Scand, 1997, 81: 36–68

    Article  MathSciNet  Google Scholar 

  34. Sjölin P. Homogeneous maximal estimates for solutions to the Schrödinger equation. Bull Inst Math Acad Sin, 2002, 30: 133–140

    MATH  Google Scholar 

  35. Sjölin P. Spherical harmonics and maximal estimates for the Schrödinger equation. Ann Acad Sci Fenn Math, 2005, 30: 393–406

    MathSciNet  MATH  Google Scholar 

  36. Sjölin P. Radial functions and maximal operators of Schrödinger type. Indiana Univ Math J, 2011, 60: 143–159

    Article  MathSciNet  MATH  Google Scholar 

  37. Stein E M. Oscillatory integrals in Fourier analysis. In: Stein E M, ed. Beijing Lectures in Harmonic Analysis. Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 307–355

    Google Scholar 

  38. Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971

    MATH  Google Scholar 

  39. Tao T. A sharp bilinear restrictions estimate for paraboloids. Geom Funct Anal, 2003, 13: 1359–1384

    Article  MathSciNet  MATH  Google Scholar 

  40. Tao T, Vargas A. A bilinear approach to cone multipliers II. Applications. Geom Funct Anal, 2000, 10: 216–258

    Article  MathSciNet  MATH  Google Scholar 

  41. Vega L. Schrödinger equations: Pointwise convergence to the initial data. Proc Amer Math Soc, 1988, 102: 874–878

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the referees for their very careful reading. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11371057, 11471033, 11571160, 11661061), the Inner Mongolia University Scientific Research Projects (No. NJZZ16234), and the Natural Science Foundation of Inner Mongolia (No. 2015MS0108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoming Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Niu, Y. Maximal estimate for solutions to a class of dispersive equation with radial initial value. Front. Math. China 12, 1057–1084 (2017). https://doi.org/10.1007/s11464-017-0654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-017-0654-z

Keywords

MSC

Navigation