Skip to main content
Log in

Higher Order Fractional Differentiability for the Stationary Stokes System

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper focuses on the higher order fractional differentiability of weak solution pairs to the following nonlinear stationary Stokes system

$$\left\{ {\matrix{{{\rm{div}}\,{\cal A}\left( {x,D{\bf{u}}} \right) - \nabla \pi = {\rm{div}}\,\,{\bf{F}},} \hfill & {{\rm{in}}\,\,\Omega ,} \hfill \cr {{\rm{div}}\,{\bf{u}} = 0,} \hfill & {{\rm{in}}\,\,\Omega .} \hfill \cr } } \right.$$

In terms of the difference quotient method, our first result reveals that if F ∈ B βp,q,loc (Ω,ℝn)for p = 2 and \(1 \le q \le {{2n} \over {n - 2\beta }}\), then such extra Besov regularity can transfer to the symmetric gradient Du and its pressure π with no losses under a suitable fractional differentiability assumption on \(x \mapsto {\cal A}\left( {x,\xi } \right)\). Furthermore, when the vector field \({\cal A}\left( {x,D{\bf{u}}} \right)\) is simplified to the full gradient ∇u, we improve the aforementioned Besov regularity for all integrability exponents p and q by establishing a new Campanato-type decay estimates for (∇u, π).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, G., Durán, R. G., Muschietti, M. A.: Solutions of the divergence operator on John domains. Adv. Math., 206, 373–401 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baisón, A. L., Clop, A., Giova, R., et al.: Fractional differentiability for solutions of nonlinear elliptic equations. Potential Anal., 46, 403–430 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balci, A. K., Diening, L., Weimar, M.: Higher Order Calderón-Zygmund Estimates for the p-Laplace Equation. J. Differential Equations, 268, 590–635 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byun, S. S., Cho, N.: Global estimates of generalized non-Newtonian Stokes systems on non-smooth domains, arXiv:1903.06196, 2019

  5. Choi, J., Dong, H.: Gradient estimates for Stokes systems with Dini mean oscillation coefficients. J. Differential Equations, 266, 4451–4509 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clop, A., Giova, R., Passarelli di Napoli, A.: Besov regularity for solutions of p-harmonic equations. Adv. Nonlinear Anal., 8, 762–778 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daněček, J., John, O., Stará, J.: Morrey space regularity for weak solutions of Stokes systems with VMO coefficients. Annali di Matematica, 190, 681–701 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diening, L., Kaplický, P., Schwarzacher, S.: Campanato estimates for the generalized Stokes system. Ann. Mat. Pura Appl., 193, 1779–1794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eleuteri, M., Passarelli di Napoli, A.: Higher differentiability for solutions to a class of obstacle problems. Calc. Var. Partial Differential Equations, 57, Paper No. 115, 29 pp. (2018)

  10. Geng, J., Kilty, J.: The Lp regularity problem for the Stokes system on Lipschitz domains. J. Differential Equations, 259, 1275–1296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giova, R.: Besov regularity for solutions of elliptic equations with variable exponents. Math. Nachr., 293, 1459–1480 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giusti, E.: Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003

    Book  MATH  Google Scholar 

  13. Haroske, D. D.: Envelopes and Sharp Embeddings of Function Spaces, Chapman and Hall/CRC, Boca Raton, 2007

    MATH  Google Scholar 

  14. Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings. Adv. Math., 26, 3579–3621 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, L., Zhang, Z.: Higher differentiability for solutions of nonhomogeneous elliptic obstacle problems. J. Math. Anal. Appl., 479, 789–816 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, L., Zhang, Z.: Wolff type potential estimates for stationary Stokes systems with Dini-BMO coefficients. Commun. Contemp. Math., 23(7), Paper No. 2050064, 24 pp. (2021)

  17. Shen, Z.: A note on the Dirichlet problem for the Stokes system in Lipschitz domains. Proc. Amer. Math. Soc., 123, 801–811 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Triebel, H.: Theory of Function Spaces, Monogr. Math., Vol. 78, Birkhäuser, Basel, 1983

    Book  MATH  Google Scholar 

  19. Triebel, H.: Local approximation spaces. Z. Anal. Anwend., 8, 261–288 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for their time and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Qiu Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 12071229 and 12101452) and Tianjin Normal University Doctoral Research Project (Grant No. 52XB2110)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L.W., Zhang, Z.Q. & Xiong, Q. Higher Order Fractional Differentiability for the Stationary Stokes System. Acta. Math. Sin.-English Ser. 39, 13–29 (2023). https://doi.org/10.1007/s10114-022-1198-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-1198-z

Keywords

MR(2010) Subject Classification

Navigation