Skip to main content
Log in

Orbital Stability of Peakons for the Modified Camassa—Holm Equation

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we investigate the orbital stability of the peaked solitons (peakons) for the modified Camassa—Holm equation with cubic nonlinearity. We consider a minimization problem with an appropriately chosen constraint, from which we establish the orbital stability of the peakons under H1W1,4 norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camassa, R., Holm, D. D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  2. Cao, C. S., Holm, D. D., Titi, E. S.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Diff. Eqs., 16, 167–178 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chang, X., Szmigielski, J.: Lax integrability and the peakon problem for the modified Camassa—Holm Equation with cubic nonlinearity. Commun. Math. Phy., 358, 295–341 (2018)

    Article  Google Scholar 

  4. Chen, R. M., Lenells, J., Liu, Y.: Stability of the μ-Camassa—Holm peakons. J. Nonlinear Sci., 23, 97–112 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chou, K. S., Qu, C. Z.: Integrable equations arising from motions of plane curves I. Physica D, 162, 9–33 (2002)

    Article  MathSciNet  Google Scholar 

  6. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble), 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  7. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Annali Sc. Norm. Sup. Pisa, 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica, 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  9. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z., 233, 75–91 (2000)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa—Holm and Degasperis—Procesi equations. Arch. Rat. Mech. Anal., 192, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Phys. D, 157, 75–89 (2001)

    Article  MathSciNet  Google Scholar 

  12. Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math., 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  13. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa-Holm via a geometric approach. J. Funct. Anal., 275, 988–1007 (2018)

    Article  MathSciNet  Google Scholar 

  14. El Dika, K., Molinet, L.: Stability of multi-peakons. Ann. Inst. H. Poincare Anal. Non Lin., 18, 1517–1532 (2009)

    Article  Google Scholar 

  15. Fokas, A. S.: The Korteweg-deVries equation and beyond. Acta Appl. Math., 39, 295–305 (1995)

    Article  MathSciNet  Google Scholar 

  16. Fokas, A. S., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D, 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  17. Fuchssteiner, B.: Some tricks from the symmetry toolbox for nonlinear equations: generalizations of the Holm equation. Physica D, 95, 229–243 (1996)

    Article  MathSciNet  Google Scholar 

  18. Fu, Y., Gui, G. L., Liu, Y., et al.: On the Cauchy problem for the integrable modified Camassa—Holm equation with cubic nonlinearity. J. Diff. Eqs., 255, 1905–1938 (2013)

    Article  MathSciNet  Google Scholar 

  19. Goldstein, R. E., Petrich, D. M.: The Korteweg—de Vries hierarchy as dynamics of closed curves in the plane. Phys. Rev. Lett., 67, 3203–3206 (1991)

    Article  MathSciNet  Google Scholar 

  20. Gui, G. L., Liu, Y., Olver, P., et al.: Wave-breaking and peakons for a modified CamassaHolm equation. Commun. Math. Phys., 319, 731–759 (2013)

    Article  Google Scholar 

  21. Hormander, L.: Lectures on Nonlinear Hyperbolic Differential Equations, Springer, Berlin, 1997

    MATH  Google Scholar 

  22. Holden, H., Raynaud, X.: A convergent numerical scheme for the Camassa—Holm equation based on multipeakons. Disc. Cont. Dyn. Syst. A, 14, 505–523 (2006)

    Article  MathSciNet  Google Scholar 

  23. Johnson, R. S.: Camassa—Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech., 455, 63–82 (2002)

    Article  MathSciNet  Google Scholar 

  24. Kouranbaeva, S.: The Camassa—Holm equation as ageodesic flow on the diffeomorphism group. J. Math. Phys., 40, 857–868 (1999)

    Article  MathSciNet  Google Scholar 

  25. Li, Y. A., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Diff. Eqs., 162, 27–63 (2000)

    Article  MathSciNet  Google Scholar 

  26. Li, Y. A., Olver, P., Rosenau, P.: Non-analytic solutions of nonlinear wave models. In: Nonlinear Theory of Generalized Functions (M. Grosser, G. Hormann, M. Kunzinger, M. Oberguggenberger, eds.), Research Notes in Mathematics, Vol. 401, New York: Chapman and Hall/CRC, 1999, 129–145

    MATH  Google Scholar 

  27. Lions, P.: The concentration compactness principle in the calculus of variations. The locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  28. Lin, Z., Liu, Y.: Stability of peakons for the Degasperis—Procesi equation. Comm. Pure Appl. Math., 62, 125–146 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Murat, F.: Compacitépar compensation. Annali Sc. Norm. Sup. Pisa (4), 5, 489–507 (1978)

    Google Scholar 

  30. Olver, P. J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E, 53, 1900–1906 (1996)

    Article  MathSciNet  Google Scholar 

  31. Pinkall, U.: Hamiltonian flows on the space of star-shaped curves. Results Math., 27, 328–332 (1995)

    Article  MathSciNet  Google Scholar 

  32. Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys., 47, 112701, 9 pp. (2006)

    Article  MathSciNet  Google Scholar 

  33. Qiao, Z., Li, X.: An integrable equation with nonsmooth solitons. Theor. Math. Phys., 267, 584–589 (2011)

    Article  MathSciNet  Google Scholar 

  34. Qu, C., Liu, X., Liu, Y.: Stability of peakons for an integrable modified Camassa—Holm equation with cubic nonlinearity. Commun. Math. Phys., 322, 967–997 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for their time and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Li.

Additional information

Supported by the NSFC (Grant No. 11771161)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Orbital Stability of Peakons for the Modified Camassa—Holm Equation. Acta. Math. Sin.-English Ser. 38, 148–160 (2022). https://doi.org/10.1007/s10114-022-0425-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-0425-y

Keywords

MR(2010) Subject Classification

Navigation