Skip to main content
Log in

Semiparametric Bayesian inference for mean-covariance regression models

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoniak, C. E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist., 2, 1152–1174 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bates, D., Mächler, M., Bolker, B., et al.: Fitting linear mixed-effects models using lme4. J. Stat. Softw., 67, 1–48 (2015)

    Article  Google Scholar 

  3. Belenky, G., Wesensten, N. J., Thorne, D. R., et al.: Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: A sleep dose-response study. J. Sleep Res., 12, 1–12 (2003)

    Article  Google Scholar 

  4. Blackwell, D., MacQueen, J. B.: Ferguson distributions via Polya urn schemes. Ann. Statist., 1, 353–355 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunner, L. J., Lo, A. Y.: Bayes methods for a symmetric unimodal density and its mode. Ann. Statist., 17, 1550–1566 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Escobar, M. D.: Estimating normal means with a Dirichlet process prior. J. Amer. Statist. Assoc., 89, 268–277 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Escobar, M. D., West, M.: Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc., 90, 577–588 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferguson, T. S.: A Bayesian analysis of some nonparametric problems. Ann. Statist., 1, 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gelman, A.: Prior distributions for variance parameters in hierarchical models (comment on an article by Browne and Draper). Bayesian Anal., 1, 515–533 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Geweke, J.: Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Technical report, Federal Reserve Bank of Minneapolis, Research Department, 1991

    Google Scholar 

  11. Hoff, P. D.: Constrained nonparametric estimation via mixtures. PhD thesis, Department of Statistics, University of Wisconsin, 2000

    Google Scholar 

  12. Hoff, P. D.: Nonparametric estimation of convex models via mixtures. Ann. Statist., 31, 174–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, R. A., Wichern, D. W.: Applied Multivariate Statistical Analysis, Upper Saddle River, Pearson Prentice Hall, 2007

    MATH  Google Scholar 

  14. Laird, N.: Nonparametric maximum likelihood estimation of a mixing distribution. J. Amer. Statist. Assoc., 73, 805–811 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, T. I., Wang, W. L.: Bayesian inference in joint modelling of location and scale parameters of the t distribution for longitudinal data. J. Statist. Plann. Inference, 141, 1543–1553 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lindsay, B.: The geometry of mixture likelihoods: a general theory. Ann. Statist., 11, 86–94 (1983a)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindsay, B.: The geometry of mixture likelihoods, part ii: The exponential family. Ann. Statist., 11, 783–792 (1983b)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindsay, B.: Mixture models: theory, geometry and applications. In NSF-CBMS Regional Conference Series in Probability and Statistics, volume 5, pages i–163. Institute of Mathematical Statistics and the American Statistical Association, 1995

    Google Scholar 

  19. Littell, R. C., Pendergast, J., Natarajan, R.: Modelling covariance structure in the analysis of repeated measures data. Stat. Med., 19, 1793–1819 (2000)

    Article  Google Scholar 

  20. MacEachern, S. N., Müller, P.: Estimating mixture of Dirichlet process models. J. Comput. Graph. Statist., 7, 223–238 (1998)

    Google Scholar 

  21. Neal, R. M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Statist., 9, 249–265 (2000)

    MathSciNet  Google Scholar 

  22. Owen, A. B.: Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237–249 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Owen, A. B.: Empirical Likelihood, CRC Press, Boca Raton, 2001

    Book  MATH  Google Scholar 

  24. Pan, J., MacKenzie, G.: On modelling mean-covariance structures in longitudinal studies. Biometrika, 90, 239–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan, J., MacKenzie, G.: Regression models for covariance structures in longitudinal studies. Stat. Model., 6, 43–57 (2006)

    Article  MathSciNet  Google Scholar 

  26. Pan, J., MacKenzie, G.: Modelling conditional covariance in the linear mixed model. Stat. Model., 7, 49–71 (2007)

    Article  MathSciNet  Google Scholar 

  27. Park, T., Min, S.: Partially collapsed Gibbs sampling for linear mixed-effects models. Comm. Statist. Theory Methods, 45, 165–180 (2016)

    MATH  Google Scholar 

  28. Pourahmadi, M.: Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika, 86, 677–690 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, M., Dunson, D. B., Baird, D.: Semiparametric Bayes hierarchical models with mean and variance constraints. Comput. Statist., 54, 2172–2186 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the editors and the reviewers for their time and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Jun Yu.

Additional information

Supported by National Natural Science Foundation of China (Grant Nos. 11171007/A011103, 11171230 and 11471024)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.J., Shen, J.S., Li, Z.N. et al. Semiparametric Bayesian inference for mean-covariance regression models. Acta. Math. Sin.-English Ser. 33, 748–760 (2017). https://doi.org/10.1007/s10114-016-6357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-016-6357-7

Keywords

MR(2010) Subject Classification

Navigation