Skip to main content
Log in

A characterization of the Ejiri torus in S 5

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We conjecture that a Willmore torus having Willmore functional between 2π 2 and 2π 2 \(\sqrt 3 \) is either conformally equivalent to the Clifford torus, or conformally equivalent to the Ejiri torus. Ejiri’s torus in S 5 is the first example of Willmore surface which is not conformally equivalent to any minimal surface in any real space form. Li and Vrancken classified all Willmore surfaces of tensor product in S n by reducing them into elastic curves in S 3, and the Ejiri torus appeared as a special example. In this paper, we first prove that among all Willmore tori of tensor product, the Willmore functional of the Ejiri torus in S 5 attains the minimum 2π 2 \(\sqrt 3 \), which indicates our conjecture holds true for Willmore surfaces of tensor product. Then we show that all Willmore tori of tensor product are unstable when the co-dimension is big enough. We also show that the Ejiri torus is unstable even in S 5. Moreover, similar to Li and Vrancken, we classify all constrained Willmore surfaces of tensor product by reducing them with elastic curves in S 3. All constrained Willmore tori obtained this way are also shown to be unstable when the co-dimension is big enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohle, C., Peters, G., Pinkall, U.: Constrained Willmore surfaces. Calc. Var. Partial Differential Equations, 32(2), 263–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bryant, R.: A duality theorem for Willmore surfaces. J. Diff. Geom., 20, 23–53 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Burstall, F., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. Contemporary Mathematics 308, Providence, RI: Amer. Math. Soc., 2002, 39–61

    MATH  Google Scholar 

  4. Chen, B. Y.: Differential geometry of tensor product immersions. Ann. Global Anal. Geom., 11, 345–359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, B. Y.: On the total curvature of immersed manifolds. V. C-surfaces in Euclidean m-space. Bull. Inst. Math. Acad. Sinica, 9, 509–516 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Chen, B. Y.: Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984, xi+352 pp

    Book  MATH  Google Scholar 

  7. Costa, C. J.: Complete minimal surfaces in R3 of genus one and four planar embedded ends. Proc. Amer. Math. Soc., 119(4), 1279–1287 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Ejiri, N.: A counterexample for Weiner’s open question. Indiana Univ. Math. J., 31(2), 209–211 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ejiri, N.: Willmore surfaces with a duality in S n(1). Proc. London Math. Soc. (3), 57(2), 383–416 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gouberman, A., Leschke, K.: New examples of Willmore tori in S 4. Journal of Physics A: Mathematical and Theoretical, 42(40), 404010 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Z., Li, H., Wang, C. P.: The second variation formula for Willmore submanifolds in S n. Results in Math., 40, 205–225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heller, L.: Constrained Willmore tori and elastic curves in 2-dimensional space forms. Comm. Anal. Geom., 22(2), 343–369 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hou, Z.: The total mean curvature of submanifolds in a Euclidean space. Michigan Math. J., 45(3), 497–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuwert, E., Lorenz, J.: On the stability of the CMC Clifford tori as constrained Willmore surfaces. Ann. Global Anal. Geom., 44(1), 23–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Langer, J., Singer, D.: The total squared curvature of closed curves. J. Diff. Geom., 20, 1–22 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Langer, J., Singer, D.: Curves in the hyperbolic plane and the mean curvatures of tori in 3-space. Bull. London Math. Soc., 16, 531–534 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Langer, J., Singer, D.: Curve-straightening in Riemannian manifolds. Ann. Global Anal. Geom., 5(2), 133–150 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H. Z., Vrancken, L.: New examples of Willmore surfaces in S n. Ann. Global Anal. Geom., 23(3), 205–225 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, P., Yau, S. T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math., 69(2), 269–291 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Q. C., Yan, W. J.: On Ricci tensor of focal submanifolds of isoparametric hypersurfaces. Sci. China Math., 58, 1723–1736 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marques, F., Neves, A.: Min-Max theory and the Willmore conjecture. Ann. Math., 179(2), 683–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marques, F., Neves, A.: The Willmore conjecture. Jahresber. Dtsch. Math.-Ver., 116(4), 201–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mondino, A., Nguyen, H. T.: A gap theorem for Willmore tori and an application to the Willmore flow. Nonlinear Analysis: Theory, Methods and Applications, 102, 220–225 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Montiel, S.: Willmore two-spheres in the four-sphere. Trans. Amer. Math. Soc., 352, 4469–4486 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ndiaye, C., Schätzle, R.: Explicit conformally constrained Willmore minimizers in arbitrary codimension. Calc. Var. Partial Differential Equations, 51(1–2), 291–314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Palmer, B.: The conformal Gauss map and the stability of Willmore surfaces. Ann. Global Anal. Geom., 9(3), 305–317 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pinkall, U.: Hopf tori in S 3. Invent. Math., 81(2), 379–386 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qian, C., Tang, Z. Z., Yan, W. J.: New examples of Willmore submanifolds in the unit sphere via isoparametric functions, II. Ann. Glob. Anal. Geom., 43, 47–62 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tang, Z. Z., Yan, W. J.: New examples of Willmore submanifolds in the unit sphere via isoparametric functions. Ann. Glob. Anal. Geom., 42, 403–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, Z. Z., Yan, W. J.: Isoparametric foliation and a problem of Besse on generalizations of Einstein condition. Adv. Math., 285, 1970–2000 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weiner, J.: On a Problem of Chen, Willmore, et al. Indiana Univ. Math. J., 27(1), 19–35 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Willmore, T. J.: Note on embedded surfaces. An. St. Univ. Iasi, s.I.a. Mat., 12B, 493–496 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Additional information

Supported by NSFC (Grant Nos. 11201340 and 11571255) and the Fundamental Research Funds for the Central Universities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P. A characterization of the Ejiri torus in S 5 . Acta. Math. Sin.-English Ser. 32, 1014–1026 (2016). https://doi.org/10.1007/s10114-016-5491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-016-5491-6

Keywords

MR(2010) Subject Classification

Navigation