Skip to main content
Log in

Abstract

Constrained Willmore surfaces are conformal immersions of Riemann surfaces that are critical points of the Willmore energy \({\mathcal{W}} = \int H^2\) under compactly supported infinitesimal conformal variations. Examples include all constant mean curvature surfaces in space forms. In this paper we investigate more generally the critical points of arbitrary geometric functionals on the space of immersions under the constraint that the admissible variations infinitesimally preserve the conformal structure. Besides constrained Willmore surfaces we discuss in some detail examples of constrained minimal and volume critical surfaces, the critical points of the area and enclosed volume functional under the conformal constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke, W.: Vorlesungen über Differentialgeometrie III: Differentialgeometrie der Kreise und Kugeln. Grundlehren 29. Springer, Berlin (1929)

    Google Scholar 

  2. Bohle, C., Peters, G.P.: Soliton Spheres (2007) (in preparation)

  3. Bohle, C., Peters, G.P.: Bryant surfaces with smooth ends, arXiv:math.DG/0411480

  4. Bohle, C.: Constrained Willmore tori in the 4-sphere (2007) (in preparation)

  5. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Diff. Geom. 20, 23–53 (1984)

    MATH  Google Scholar 

  6. Bryant, R.L.: Surfaces in conformal geometry. The mathematical heritage of Hermann Weyl (Durham, NC, 1987). In: Proceedings of symposium in pure mathematics, Vol. 48, pp. 227–240. American Mathematical Society, Providence (1988)

  7. Burstall, F., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. Contemp. Math. 308, 39–61 (2002) arXiv: math.DG/0111169

    Google Scholar 

  8. Early, C.J., Eells, J.: A fibre bundle description of Teichmüller theory. J. Diff. Geom. 3, 19–43 (1969)

    Google Scholar 

  9. Germain, S.: Recherches sur la théorie des surfaces élastiques. Courcier, Paris (1821)

    Google Scholar 

  10. Garsia, A.M.: An imbedding of closed Riemann surfaces in Euclidean space. Comment. Math. Helv. 35, 93–110 (1961)

    Article  MathSciNet  Google Scholar 

  11. Langer, J., Singer, D.A.: The total squared curvature of closed curves. J. Differ. Geom. 20, 1–22 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Pinkall, U.: Hopf tori in S 3. Invent. Math. 81, 379–386 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pinkall, U., Sterling, I.: Willmore surfaces. Math. Intelligencer 9, 38–43 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Richter, J.: Conformal maps of a Riemann surface into the space of quaternions. Thesis, TU-Berlin (1997)

  15. Rüedy, R.A.: Embeddings of open Riemann surfaces. Comment. Math. Helv. 46, 214–225 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schmidt, M.: A proof of the Willmore conjecture, arXiv: math.DG/0203224

  17. Sziegoleit, F.: Bedingt minimale Flächen. Diplomarbeit, TU-Berlin (2004)

    Google Scholar 

  18. Tromba, A.J.: Teichmüller Theory in Riemannian Geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1992)

    Google Scholar 

  19. Weiner J.L. (1978) On a problem of Chen, Willmore et al. Indiana Univ. Math. J. 27, 19–35

    Article  MATH  MathSciNet  Google Scholar 

  20. Willmore, T.J.: Note on embedded surfaces. An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 11, 493–496 (1965)

    MathSciNet  Google Scholar 

  21. Willmore, T.J.: Riemannian Geometry. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bohle.

Additional information

C. Bohle, G. P. Peters and U. Pinkall are partially supported by DFG SPP 1154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohle, C., Peters, G.P. & Pinkall, U. Constrained Willmore surfaces. Calc. Var. 32, 263–277 (2008). https://doi.org/10.1007/s00526-007-0142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0142-5

Mathematics Subject Classification (2000)

Navigation