Skip to main content
Log in

Ergodic measures of geodesic flows on compact Lie groups

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Let Ψ be the geodesic flow associated with a two-sided invariant metric on a compact Lie group. In this paper, we prove that every ergodic measure µ of Ψ is supported on the unit tangent bundle of a flat torus. As an application, all Lyapunov exponents of µ are zero hence µ is not hyperbolic. Our underlying manifolds have nonnegative curvature (possibly strictly positive on some sections), whereas in contrast, all geodesic flows related to negative curvature are Anosov hence every ergodic measure is hyperbolic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D. V.: Geodesic flows on closed Riemannian manifolds with negative curvature. Trudy Math. Inst. Steklov., 90, 1–210 (1967)

    MathSciNet  Google Scholar 

  2. Anosov, D. V., Sinai, Ya. G.: Certain smooth ergodic systems. Uspekhi Math. Nauk., 22, 107–172 (1967)

    MathSciNet  MATH  Google Scholar 

  3. Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Cambridge University Press, Cambridge, 2007

    Book  Google Scholar 

  4. Butler, L. T.: Zero entropy, non-integrable geodesic flows and a non-commutative rotation vecter. Trans. Amer. Math. Soc., 9, 3641–3650 (2003)

    Article  Google Scholar 

  5. Cheeger, J.: Some examples of manifolds of non-negative curvature. J. Differential Geom., 8, 623–628 (1973)

    MathSciNet  MATH  Google Scholar 

  6. Eberlein, P.: When is a geodesic flow of Anosov type? I, II. J. Differential Geom., 8(3), 437–463; 8(4), 565–577 (1973)

    MathSciNet  MATH  Google Scholar 

  7. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 1999

    MATH  Google Scholar 

  8. Gromov, M.: Volume and bounded cohomology. Publ. Math. Hautes. Inst. Études Sci., 56, 5–100 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Gromov, M.: Almost flat manifolds. J. Differential Geom., 13, 231–241 (1978)

    MathSciNet  MATH  Google Scholar 

  10. Gunesch, R.: Precise Volume Estimates in Nonpositive Curvature, Fachbereich Mathematik Univ, Hamburg, 2007

    Google Scholar 

  11. Katok, A.: Entropy and closed geodesics. Ergodic Theory Dynam. Systems, 2, 339–365 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Klingenberg, W.: Riemannian manifolds with geodesic flow of Anosov type. Ann. of Math., 99, 1–13 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Knieper, G., Weiss, H.: A surface with positive curvature and positive topological entropy. J. Differential Geom., 39, 229–249 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Knieper, G., Weiss, H.: C genericity of positive topological entropy for geodesic flows on \(\mathbb{S}^2\). J. Differential Geom., 62, 127–141 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Kramli, A. B.: Geodesic flows on compact Riemannian surfaces without focal points. Studia Sci. Math. Hunger., 8, 59–78 (1973)

    MathSciNet  Google Scholar 

  16. Mañé, R.: On the entropy of geodesic flow in manifolds without conjugate points. Invent. Math., 69, 375–392 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Manning, A.: Topological entropy for geodesic flows. Ann. of Math., 110, 567–573 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Newhouse, S.: Entropy and volume. Ergodic Theory Dynam. Systems, 8, 283–299 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oseledec, V. I.: A multiplicative ergodic theorem. Trans. Moscow Math. Soc., 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  20. Pesin, Y.: Geodesic flows on closed Riemannain manifolds without focal points. Math. USSR-Izv., 11, 1195–1228 (1977)

    Article  MATH  Google Scholar 

  21. Ruelle, D.: An inequality for the entropy of differential maps. Bull. Braz. Math. Soc., 9, 83–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, W.: Asymptotic formulae for Brillouin index on Riemannian manifolds. Acta Math. Sin., Engl. Series, 23(7), 1297–1302 (2007)

    Article  MATH  Google Scholar 

  23. Varadarajan, V. S.: Lie Groups, Lie Algebras, and Their Reprsentations, Springer-Verlag, New York, 1984

    Book  Google Scholar 

  24. Walters, P.: An Introduction to Ergodic Theory, Springer-Verlag, New York, 2000

    MATH  Google Scholar 

  25. Yomdin, Y.: Volume growth and entropy. Israel J. Math., 57, 285–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liao.

Additional information

The second author is supported by National Natural Science Foundation of China (Grant No. 11231001) and Education Ministry of China

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, G., Sun, W.X. Ergodic measures of geodesic flows on compact Lie groups. Acta. Math. Sin.-English Ser. 29, 1781–1790 (2013). https://doi.org/10.1007/s10114-013-1515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-013-1515-7

Keywords

MR(2010) Subject Classification

Navigation