Skip to main content
Log in

Some Rigidity Theorems for Anosov Geodesic Flows in Manifolds of Finite Volume

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we prove that if the geodesic flow of a complete manifold without conjugate points with sectional curvatures bounded below by \(-c^2\) is of Anosov type, then the constant of contraction of the flow is \(\ge e^{-c}\). Moreover, if M has a finite volume, the equality holds if and only if the sectional curvature is constant. We also apply this result to get a certain rigidity for bi-Lipschitz, and consequently, for \(C^1\)-conjugacy between two geodesic flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We can think in \(\alpha \)- equivalence (\(\alpha \)-conjugacy), when there are two constants \(C_1\) and \(C_2\) such that \(C_1\cdot d(x,y)^{\alpha }\le D(f(x),f(y))\le C_2\cdot d(x,y)^{\alpha }\), but such definition do not make any sense for \(C^1\) flows.

References

  1. Anosov, D.: Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Steklov Inst. Math. 90 (1967)

  2. Benoist, Y., Foulon, P., Labourie, F.: Flots d’Anosov à distributions de Liaponov différentiables, Annales de l’I.H.P. Physique théorique, 53(4), 395–412 (1990)

  3. Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictement. Geom. Funct. Anal. 5(5), 731–799 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bolton, J.: Conditions under which a Geodesic Flow is Anosov. Mathematische Annalen 240, 103–114 (1979)

    Article  MathSciNet  Google Scholar 

  5. Burns, K., Gelfert, K.: Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete Contin. Dyn. Syst. A 14, 1841–1872 (2014)

    Article  MathSciNet  Google Scholar 

  6. Burns, K., Matveev, V.: Open problems and questions about geodesics. Ergod. Theory Dyn. Syst. 41(3), 641–684 (2021)

    Article  MathSciNet  Google Scholar 

  7. Butler, C.: Rigidity of equality of Lyapunov exponents for geodesic flows. J. Differ. Geom. 109(1), 39–79 (2018)

    MathSciNet  Google Scholar 

  8. Connell, C.: Minimal Lyapunov exponents, quasiconformal structures, and rigidity of non-positively curved manifolds. Ergod. Theory Dyn. Syst. 23(2), 429–446 (2003)

    Article  MathSciNet  Google Scholar 

  9. Croke, C.: Rigidity Theorems in Riemannian Geometry. In: Croke, C., Vogelius, M., Uhlmann, G., Lasiecka, I. (eds.) Geometric Methods in Inverse Problems and PDE Control, pp. 47–72. Springer, New York (2004)

    Chapter  Google Scholar 

  10. Croke, C., Eberlein, P., Kleiner, B.: Conjugacy and rigidity for nonpositively curved manifolds of higher rank. Topology 35(2), 273–286 (1996)

    Article  MathSciNet  Google Scholar 

  11. do Carmo, M.P.: Riemannian Geometry, Mathematics: Theory & Applications, Topics Differential Geometry, vol. 1. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  12. Donnay, V., Pugh, C.: Anosov geodesic flows for embedded surfaces. Astérisque, (287):xviii, Geometric methods in dynamics II, 61–69 (2003)

  13. Dowell, Í., Romaña, S.: Contributions to the study of Anosov geodesic flows in non-compact manifolds. Discrete Contin. Dyn. Syst. A 40(9), 5149–5171 (2020)

    Article  MathSciNet  Google Scholar 

  14. Dowell, Í., Romaña, S.: Riemannian manifolds with Anosov geodesic flow do not have conjugate points. Preprint (2020). Available at arXiv:2008.12898

  15. Eberlein, P.: When is a Geodesic flow of Anosov type? I. J. Differ. Geom. 8, 437–463 (1973)

    MathSciNet  Google Scholar 

  16. Feldman, J., Ornstein, D.: Semi-rigidity of horocycle flows over compact surfaces of variable negative curvature. Ergod. Theory Dyn. Syst. 7(1), 49–72 (1987)

    Article  Google Scholar 

  17. Feres, R., Katok, A.: Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows. Ergod. Theory Dyn. Syst. 9(3), 427–432 (1989)

    Article  MathSciNet  Google Scholar 

  18. Freire, A., Mañé, R.: On the entropy of the geodesic flow in Manifolfs without conjugate points. Invent. Math. 69, 375–392 (1982)

    Article  MathSciNet  Google Scholar 

  19. Green, L.W.: A theorem of E. Hopf. Michigan Math. J. 5, 31–34 (1958)

    Article  MathSciNet  Google Scholar 

  20. Guimarães, F.F.: The integral of the scalar curvature of complete manifolds without conjugate points. J. Differ. Geom. 36, 651–662 (1992)

    MathSciNet  Google Scholar 

  21. Hopf, E.: Statistik der geodiitischen Linien in Mannigfaltigkeiten negativer Kriimmung. Ber. Verh. Sachs. Akad. Wiss. Leipzig 91, 261–304 (1939)

    MathSciNet  Google Scholar 

  22. Hopf, E.: Closed surfaces without conjugate points. Proc. Nat. Acad. Sci. U.S.A. 34, 47–51 (1948)

    Article  MathSciNet  Google Scholar 

  23. Kanai, M.: Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations. Ergod. Theory Dyn. Syst. 8(2), 215–239 (1988)

    Article  MathSciNet  Google Scholar 

  24. Katok, A, H Boris, Introduction to the Modern theory of dynamical systems. In: Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

  25. Klingenberg, W.: Riemannian manifolds with geodesic flow of Anosov type. Ann. Math. 99(1), 1–13 (1974)

    Article  MathSciNet  Google Scholar 

  26. Knieper, G.: Chapter 6, hyperbolic dynamics and Riemannian geometry. In: Handbook of Dynamical Systems, vol. 1A, Elsevier Science, pp. 453–545 (2002)

  27. Kozyakin, V.: On accuracy of approximation of the spectral radius by the Gelfand formula. Linear Algebra Appl. 431(11), 2134–2141 (2009)

    Article  MathSciNet  Google Scholar 

  28. Mañé, R.: On a theorem of Klingenberg. In: Camacho, M., Pacifico, M., Takens, F. (eds), Dynamical Systems and Bifurcation Theory. Pitman Research Notes in Math., vol. 160, pp. 319–345 (1987)

  29. Oseledets, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19, 197–231 (1968); Moscov. Mat. Obsch. 19, 179–210 (1968)

  30. Paternain, G.P.: Geodesic Flows. Progress in Mathematics, vol. 180. Birkhäuser Boston Inc., Boston (1999)

    Book  Google Scholar 

  31. Pollicott, M.: \({C}^k\)-rigidity for hyperbolic flows II. Israel J. Math. 69(3), 351–360 (1990)

    Article  MathSciNet  Google Scholar 

  32. Riquelme, F.: Counterexamples to Ruelle’s inequality in the noncompact case. Annales de l’Institut Fourier, Association des Annales de l’Institut Fourier 67(1), 23–41 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank François Ledrappier for his useful comments during the preparation of this work and the anonymous referees for the great suggestions that improved the paper. Ítalo Melo was partially supported by FAPEPI (Brazil) and CNPq (Brazil) and Sergio Romaña was supported by CNPq and Faperj - Bolsa Jovem Cientista do Nosso Estado No. E-26/201.432/2022.

Author information

Authors and Affiliations

Authors

Contributions

The authors worked together on scientific visits, discussing and making advances in parallel. Both typed and revised the paper in a similar way.

Corresponding author

Correspondence to Sergio Romaña.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Í. Melo Partially supported by CAPES-BR. S. Romaña CNPq and Bolsa Jovem Cientista do Nosso Estado No. E-26/201.432/2022.

Appendix A: Comparing Distances Between a Manifold and Its Submanifolds

Appendix A: Comparing Distances Between a Manifold and Its Submanifolds

This appendix is devoted to prove the Lemma A.1. This a general lemma that can be in other context.

Lemma A.1

Let Q be a complete Riemannian manifold and P a compact submanifold of Q. Consider d the natural distance in Q and \(d_P\) the extrinsic distance in P. Then there is \(\delta >0\) such that for each \(x\in P\)

$$\begin{aligned} d_{P}(x, y)\le \frac{3}{2}d(x,y) \, \, \, \text {for all} \, \, \, y\in B^{P}_{\delta }(x), \end{aligned}$$

where \(B^{P}_{\delta }(x)\) is the ball of center x and radius \(\epsilon \) in P.

Proof

Since P is a compact submanifold of Q, then the injectivity radius \(r_{P}\) of P with extrinsic metric is a positive number. Denote by SP the unitary bundle of P and consider the non-negative real function \({\mathcal {H}}:SP\times [0,r_p] \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} {\mathcal {H}}((x,v),t) = {\left\{ \begin{array}{ll} \dfrac{d_{P}(\text {exp}^P_{x}\,tv, x)}{d(\text {exp}^P_{x}\, tv, x)}, &{} t\ne 0 \\ \, \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\ 1, &{} t=0, \end{array}\right. } \end{aligned}$$

where \(\text {exp}^P_{x}\) denotes the exponential map of P.

It is easy to see that \({\mathcal {H}}\) is continuous for all ((xv), t) with \(t\ne 0\). We state that \({\mathcal {H}}\) is continuous at any point ((xv), 0). To prove that, we used the compactness of P and the following claim:

Claim: For each \(x\in P\) the function \({\mathcal {H}}_{x}:T^{1}_{x}P\times [0,r_P] \rightarrow {\mathbb {R}}\) defined by \({\mathcal {H}}_{x}(v,t):={\mathcal {H}}((x,v),t)\) is uniformly continuous function in \(T^{1}_{x}P\times [0,r_P]\), where \(T^{1}_{x}P\) is the set of unitary tangent vectors of P at x.

Proof of Claim

By definition of \({\mathcal {H}}_{x}\) and compactness of \(T^{1}_{x}P\times [0,r_P]\), we only need to prove that \(\displaystyle \lim \nolimits _{n\rightarrow +\infty }{\mathcal {H}}_{x}(v_n,t_n)={\mathcal {H}}_{x}(v,0)=1\), for any sequence \((v_n, t_n)\in T^{1}_{x}P\times [0,r_P]\), which converges to (v, 0). In fact: first note that if \((x,v)\in SP\) and \(\alpha (t)=\text {exp}^{P}_{x}\,tv\), then from Lemma 4.1 we have that

$$\begin{aligned} \displaystyle \lim _{t\rightarrow 0^+}{\mathcal {H}}((x,v),t))=\displaystyle \lim _{t\rightarrow 0^+}\dfrac{\dfrac{d_P(\text {exp}^{P}_{x}\,tv, x)}{t}}{\dfrac{d(\text {exp}^{P}_{x}\,tv, x)}{t}}=\dfrac{\displaystyle \lim _{t\rightarrow 0^+}\dfrac{d_{P}(\alpha (t),\alpha (0))}{t}}{\displaystyle \lim _{t\rightarrow 0^+}\dfrac{d(\alpha (t),\alpha (0))}{t}}{=}\frac{||\alpha '(0)||_{P}}{||\alpha '(0)||}{=}1, \end{aligned}$$

since \(||\alpha '(0)||_{P}\) is the norm with restrict metric of \(P\subset Q\) which is equal to \(||\alpha '(0)||\).

As \({\mathcal {H}}_{x}(v_n,0)=1\) then we can assume, without loss of generality, that \(t_n\ne 0\) for all n.

For n large enough, consider the family of \(C^1\)-curves \(\gamma _{n}(t) = \text {exp}^{P}_{x} (t_nv + t t_n(v_n - v))\), \(t\in [0,1]\), and note that

$$\begin{aligned} d(\text {exp}^{P}_{x}\,t_nv, \text {exp}^{P}_{x}\,t_nv_n)\le & {} d_{P}(\text {exp}^{P}_{x}\,t_nv, \text {exp}^{P}_{x}\,t_nv_n) \le \displaystyle \int _{0}^{1} ||\gamma '_{n}(s)||_{P} \, ds \\\le & {} Kt_n||v_n-v||, \end{aligned}$$

where \(K:=\displaystyle \sup \nolimits _{\{v\in T_{x}P: ||v||\le 2r_P\}} || D (\text {exp}^{P}_{x})_{v}||\). Hence, since \(\displaystyle \lim \nolimits _{n \rightarrow +\infty }{\mathcal {H}}_{x}(v,t_n)=1\), then

$$\begin{aligned} d(\text {exp}^{P}_{x}\,t_nv_n, x)\ge & {} d(\text {exp}^{P}_{x}\,t_nv, x) - Kt_n||v_n-v||\\= & {} t_n\left( {\mathcal {H}}_{x}(v,t_n))^{-1}-K||v_n-v||\right) >0. \end{aligned}$$

In particular, we have

$$\begin{aligned} 1 \le {\mathcal {H}}_{x}(v_n,t_n)) = \dfrac{t_n}{d(\text {exp}^{P}_{x}\, t_nv_n, x)} \le \dfrac{1}{({\mathcal {H}}_{x}(v,t_n)))^{-1} - K||v_n-v||}. \end{aligned}$$

Therefore \(\displaystyle \lim \nolimits _{ n \rightarrow + \infty }{\mathcal {H}}_{x}(v_n,t_n) = 1\) as desired. \(\square \)

The last claim and compactness of P allow us to conclude the continuity of \({\mathcal {H}}\) in every point ((xv), 0) and consequently the uniformly continuity in \(SP\times [0,r_P]\).

To conclude the proof of the lemma, from the uniformly continuity of \({\mathcal {H}}\), given \(\epsilon =\frac{1}{2}\) there is \(\delta \) such that

$$\begin{aligned} |t|=d(((x,v),t), ((x,v),0))<\delta \,\, \text {implies} \, \, |{\mathcal {H}}((x,v),t)-1|< \frac{1}{2}. \end{aligned}$$

The last inequality implies that

$$\begin{aligned} |t|< \delta \, \, \, \text {implies}\, \, \, d^s(\text {exp}^s_{x}\,tv, x) \le \frac{3}{2}d(\text {exp}_{x}\, tv, x). \end{aligned}$$
(A.1)

Consequently, if \(\tilde{x}\in B^P_{\delta }(x)\), then there is \(\tilde{t}\) with \(|\tilde{t}|<\delta \), \({v}\in T^1_{x}P\) such that \(\text {exp}^P_{x}\, \tilde{t}{v}=\tilde{x}\). Thus, (A.1) provides the result of the lemma. \(\square \)

Corollary A.2

In the same condition of the Lemma A.1, there is a constant \(\Gamma >1\) such that

$$\begin{aligned} d_{P}(x, y)\le \Gamma \cdot d(x,y) \, \, \, \text {for all} \, \, \, x,y\in P. \end{aligned}$$

Proof

For each \(x\in P\) consider the function \(\Gamma (x)=\displaystyle \sup \nolimits _{y\ne x}\dfrac{d_{P}(x, y)}{d(x, y)}\). We state that there is \(\Gamma >1\) such that \(\Gamma (x)\le \Gamma \) for all \(x\in P\). In fact, by contradiction assume that for each \(n\in {\mathbb {N}}\) there is \(x_n\) such that \(\Gamma _{n}\ge n \). By definition of \(\Gamma (x_n)\) there is \(y_n\ne x_n\) with \(\dfrac{d_{P}(x_n, y_n)}{d(x_n, y_n)}\ge n-1\). Since P is a compact submanifold, then we can assume that \(x_n\) converges to x and \(y_n\) converges to y. From the last inequality, we have that \(x=y\). Therefore, from Lemma A.1, for n large enough \(y_n\in B_{\delta }(x_n)\) and

$$\begin{aligned} n-1\le \dfrac{d_{P}(x_n, y_n)}{d(x_n, y_n)}\le \frac{3}{2}, \end{aligned}$$

which provides a contradiction. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, Í., Romaña, S. Some Rigidity Theorems for Anosov Geodesic Flows in Manifolds of Finite Volume. Qual. Theory Dyn. Syst. 23, 114 (2024). https://doi.org/10.1007/s12346-024-00972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00972-7

Navigation