Skip to main content
Log in

Generalized Maupertuis’ principle with applications

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We give a rigorous proof of the equivalence of Mañé’s supercritical potential and the minimal action with respect to an associated Jacobi-Finsler metric. As a consequence, we give an explicit representation of the weak KAM solutions of one-dimensional mechanical systems without the quadratic assumption on the kinetic energy term of the Hamiltonians, and a criterion of the integrability result for such a system of arbitrary degree of freedom by the regularity assumption on Mather’s α-function is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mather, J. N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207, 169–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mather, J. N.: Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble), 43, 1349–1386 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fathi, A., Siconolfi, A.: PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differential Equations, 22, 185–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, V. I.: Mathematical Methods of Classical Mechanics, 2nd ed., Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989

    Google Scholar 

  5. Contreras, G., Iturriaga, R., Paternain, G. P., et al.: Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal., 8, 788–809 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iturriaga, R., Sánchez-Morgado, H.: Finsler metrics and action potentials. Proc. Amer. Math. Soc., 128, 3311–3316 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, L. C., Gomes, D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal., 157, 1–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fathi, A.: Weak KAM Theorem in Lagragian Dynamics, to be published by Cambridge University Press

  9. Fathi, A., Siconolfi, A.: Existence of C 1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math., 155, 363–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis, Grundlehren Text Editions, Springer-Verlag, Berlin, 2001

    Google Scholar 

  11. Burago, D., Ivanov, S., Kleiner, B.: On the structure of the stable norm of periodic metrics. Math. Res. Lett., 4, 791–808 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Lions, P. L., Papanicolaou, G., Varadhan, S. R. S.: Homogenization of Hamilton-Jacobi equations. Unpublished manuscript, 1988

  13. Cheng, W.: The integrability of positively definite Lagrangian systems via variational criterion: mechanical systems. J. Differential Equations, 249, 1664–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng, W.: On the Mather’s α-function of mechanical systems. Proc. Amer. Math. Soc., 139, 2143–2149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bangert, V.: Minimal geodesics. Ergodic Theory Dynam. Systems, 10, 263–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burago, D., Ivanov, S.: Riemannian tori without conjugate points are flat. Geom. Funct. Anal., 4, 259–269 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 9, 273–310 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mañé, R.: Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.), 28, 141–153 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mather, J. N.: Examples of Aubry sets. Ergodic Theory Dynam. Systems, 24, 1667–1723 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cheng.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2007CB814800) and Natural Scientific Foundation of China (Grant No. 10971093)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W. Generalized Maupertuis’ principle with applications. Acta. Math. Sin.-English Ser. 28, 2153–2160 (2012). https://doi.org/10.1007/s10114-012-1001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-012-1001-7

Keywords

MR(2000) Subject Classification

Navigation