Skip to main content
Log in

Global theory of one-frequency Schrödinger operators

  • Published:
Acta Mathematica

Abstract

We study Schrödinger operators with a one-frequency analytic potential, focusing on the transition between the two distinct local regimes characteristic respectively of large and small potentials. From the dynamical point of view, the transition signals the emergence of non-uniform hyperbolicity, so the dependence of the Lyapunov exponent with respect to parameters plays a central role in the analysis. Though often ill-behaved by conventional measures, we show that the Lyapunov exponent is in fact remarkably regular in a “stratified sense” which we define: the irregularity comes from the matching of nice (analytic or smooth) functions along sets with complicated geometry. This result allows us to establish that the “critical set” for the transition lies within countably many codimension one subvarieties of the (infinite-dimensional) parameter space. A more refined renormalization-based analysis shows that the critical set is rather thin within those subvarieties, and allows us to conclude that a typical potential has no critical energies. Such acritical potentials also form an open set and have several interesting properties: only finitely many “phase transitions” may happen, but never at any specific point in the spectrum, and the Lyapunov exponent is minorated in the region of the spectrum where it is positive. On the other hand, we do show that the number of phase transitions can be arbitrarily large.

Key to our approach are two results about the dependence of the Lyapunov exponent of one-frequency SL\({(2,\mathbb{C})}\) cocycles with respect to perturbations in the imaginary direction: on one hand there is a severe “quantization” restriction, and on the other hand “regularity” of the dependence characterizes uniform hyperbolicity when the Lyapunov exponent is positive. Our method is independent of arithmetic conditions on the frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila, A., The absolutely continuous spectrum of the almost Mathieu operator. Preprint, 2008. arXiv:0810.2965 [math.DS].

  2. Avila, A., Almost reducibility and absolute continuity I. Preprint, 2010. arXiv:1006.0704 [math.DS].

  3. Avila, A., KAM, Lyapunov exponents and the spectral dichotomy for one-frequency schrödinger operators. In preparation.

  4. Avila A., Bochi J., Damanik D.: Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math. J. 146, 253–280 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Avila A., Damanik D.: Generic singular spectrum for ergodic Schrödinger operators. Duke Math. J. 130, 393–400 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Avila, A., Fayad, B. & Krikorian, R., A KAM scheme for \({\rm SL(2,\mathbb{R})}\) SL(2,R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019 (2011)

  7. Avila A., Jitomirskaya S.: Almost localization and almost reducibility. J. Eur. Math. Soc. (JEMS) 12, 93–131 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Avila A., Jitomirskaya S., Sadel C.: Complex one-frequency cocycles. J. Eur. Math. Soc. (JEMS) 16, 1915–1935 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Avila A., Krikorian R.: Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. of Math. 164, 911–940 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Avila, A. & Krikorian, R., Monotonic cocycles. To appear in Invent. Math.

  11. Avron J., Simon B.: Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math. J. 50, 369–391 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Benyamini, Y. & Lindenstrauss, J., Geometric Nonlinear Functional Analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48. Amer. Math. Soc., Providence, RI, 2000.

  13. Bjerklöv K.: Positive Lyapunov exponent and minimality for a class of onedimensional quasi-periodic Schrödinger equations. Ergodic Theory Dynam. Systems 25, 1015–1045 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bjerklöv, K., Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent. Geom. Funct. Anal., 16 (2006), 1183–1200.

  15. Bourgain, J., Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, 158. Princeton Univ. Press, Princeton, NJ, 2005.

  16. Bourgain J., Goldstein M.: On nonperturbative localization with quasi-periodic potential. Ann. of Math. 152, 835–879 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bourgain J., Jitomirskaya S.: Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys. 108, 1203–1218 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bourgain, J. & Jitomirskaya, S., Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math., 148 (2002), 453–463.

  19. Christensen, J.P. R., On sets of Haar measure zero in abelian Polish groups, in Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972). Israel J. Math., 13 (1972), 255–260.

  20. Eliasson L. H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Comm. Math. Phys. 146, 447–482 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Garnett, J. B., Bounded Analytic Functions. Graduate Texts in Mathematics, 236. Springer, New York, 2007.

  22. Goldstein M., Schlag W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. of Math. 154, 155–203 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goldstein, M. & Schlag, W., Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal., 18 (2008), 755–869.

  24. Goldstein, M. & Schlag, W., On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations. Ann. of Math., 173 (2011), 337–475.

  25. Herman M. R.: Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnolʹd et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58, 453–502 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hirsch, M. W., Pugh, C. C. & Shub, M., Invariant Manifolds. Lecture Notes in Mathematics, 583. Springer, Berlin–Heidelberg, 1977.

  27. Hunt B. R., Sauer T., Yorke J. A.: Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. 27, 217–238 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jitomirskaya S.: Metal-insulator transition for the almost Mathieu operator. Ann. of Math. 150, 1159–1175 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jitomirskaya S., Koslover D. A., Schulteis M. S.: Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles. Ergodic Theory Dynam. Systems 29, 1881–1905 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Simon B.: Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging 1, 713–772 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sorets E., Spencer T.: Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Comm. Math. Phys. 142, 543–566 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Young, L.-S., Lyapunov exponents for some quasi-periodic cocycles. Ergodic Theory Dynam. Systems, 17 (1997), 483–504.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Avila.

Additional information

I am grateful to Svetlana Jitomirskaya and David Damanik for several detailed comments which greatly improved the exposition. This work was partially conducted during the period the author served as a Clay Research Fellow. This work has been supported by the ERC Starting Grant “Quasiperiodic” and by the Balzan project of Jacob Palis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, A. Global theory of one-frequency Schrödinger operators. Acta Math 215, 1–54 (2015). https://doi.org/10.1007/s11511-015-0128-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-015-0128-7

Keywords

2000 Math. Subject Classification

Navigation