Skip to main content
Log in

Equivariant normal forms for parameterized delay differential equations with applications to bifurcation theory

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we develop an efficient approach to compute the equivariant normal form of delay differential equations with parameters in the presence of symmetry. We present and justify a process that involves center manifold reduction and normalization preserving the symmetry, and that yields normal forms explicitly in terms of the coefficients of the original system. We observe that the form of the reduced vector field relies only on the information of the linearized system at the critical point and on the inherent symmetry, and the normal forms give critical information about not only the existence but also the stability and direction of bifurcated spatiotemporal patterns. We illustrate our general results by some applications to fold bifurcation, equivariant Hopf bifurcation and Hopf-Hopf interaction, with a detailed case study of additive neurons with delayed feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differential Equations, 3, 546–570 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pliss, V. A.: A reduction principle in the theory of stability of motion (in Russian). Izv. Akad. Nauk SSSR Ser. Mat., 28, 1297–1324 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Lanford, O.: Bifurcation of periodic perodic solutions into invariant tori: The work of Ruelle and Takens, Nonlinear Problems in the Physical Sciences and Biology, Springer Lecture Notes in Math., 322, 159–192 (1973)

  4. Poincaré, H.: Sur les Propriétés des Fonctions Définies par des Equations aux Différences Partielles Thése Inaugural. Gauthier-Villars, Paris, 1879

    Google Scholar 

  5. Baider, A., Churchill, R.: Unique normal forms for planar vector fields. Math. Z., 199, 303–310 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983

    MATH  Google Scholar 

  7. Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Application, World Scientific Publishing Co. Inc., River Edge, NJ, 1998

    Google Scholar 

  8. Faria, T., Magalhães, L. T.: Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation. J. Differential Equations, 122, 181–200 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faria, T., Magalháes, L. T.: Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity. J. Differential Equations, 122, 201–224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buono, P.-L., Bélair, J.: Restrictions and unfolding of double Hopf bifurcation in functional differential equations. J. Differential Equations, 189, 234–266 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buono, P.-L., LeBlanc, V. G.: Versal unfoldings for linear retarded functional differential equations. J. Differential Equations, 193, 307–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buono, P.-L., LeBlanc, V. G.: Equivariant versal unfoldings for linear retarded functional differential equations. Discrete Contin. Dyn. Syst., 12, 283–302 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Golubitsky, M., Stewart, I., Schaeffer, D. G.: Singularities and Groups in Bifurcation Theory, Vol. 2, Springer-Verlag, New York, 1988

    Book  Google Scholar 

  14. Ruelle, D.: Bifurcations in the presence of a symmetry group. Arch. Rational Mech. Anal., 51, 136–152 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coullet, P. H., Spiegel, E. A.: Amplitude equations for systems with competing instabilities. SIAM J. Appl. Math., 43, 776–821 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elphick, C., Tirapegui, E., Brachet, M. E., et al.: A simple global characterization for normal forms of singular vector fields. Phys. D, 29, 95–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krawcewicz, W., Ma, S., Wu, J.: Multiple slowly oscillating periodic solutions in coupled lossless transmission lines. Nonlinear Anal. RWA., 5, 309–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krawcewicz, W., Wu, J.: Theory and applications of Hopf bifurcations in symmetric functional-differential equations. Nonlinear Anal. TMA, 35, 845–870 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krawcewicz, W., Vivi, P., Wu, J.: Hopf bifurcations of functional differential equations with dihedral symmetries. J. Differential Equations, 146, 157–184 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sieber, J., Krauskopf, B.: Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity. Nonlinearity, 17, 85–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, J.: Symmetric functional-differential equations and neural networks with memory. Trans. Amer. Math. Soc., 350, 4799–4838 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hopf, E.: Abzweigung einer periodischen lösung eines differential systems. Berichen Math. Phys. Kl. Säch. Akad. Wiss. Leipzig, 95, 3–22 (1943)

    MathSciNet  Google Scholar 

  23. Chafee, N.: A bifurcation problem for a functional differential equation of finitely retarded type. J. Math. Anal. Appl., 35, 312–348 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hale, J. K., Verduyn Lunel, S. M.: Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993

    MATH  Google Scholar 

  25. Chow, S. N., Mallet-Paret, J.: Integral averaging and bifurcation. J. Differential Equations, 26, 112–159 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Arino, O.: Thése d’état. Université de Bordeaux 1, 1980

  27. Diekmann, O., van Gils, S.: The Center Manifold For Delay Equations in The Light Suns and Stars. In: Singularity Theory and its Application (Warwick, 1989), Part II of Lecture Notes in Mathematics, Volume 1463/1991, Springer-Verlag, New York, 1991, 122–141

    Chapter  Google Scholar 

  28. Gumowski, I.: Sur le calcul des solutions périodiques de l’équation de Cherwell-Wright. C. R. Acad. Sci. Paris, Sér. A-B, 268, A157–A159 (1969)

    MathSciNet  Google Scholar 

  29. Stech, H.: Hopf bifurcation calculations for functional differential equations. J. Math. Anal. Appl., 1109, 472–491 (1985)

    Article  MathSciNet  Google Scholar 

  30. Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York-Berlin, 1978

    MATH  Google Scholar 

  31. Guo, S., Huang, L.: Hopf bifurcating periodic orbits in a ring of neurons with delays. Phys. D, 183, 19–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo, S., Huang, L.: Stability of nonlinear waves in a ring of neurons with delays. J. Differential Equations, 236, 343–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guo, S., Huang, L.: Pattern formation and continuation in a trineuron ring with delays. Acta Mathematica Sinica, English Series, 23, 799–818 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guo, S.: Spatio-temporal patterns of nonlinear oscillations in an excitatory ring network with delay. Nonlinearity, 18, 2391–2407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guo, S., Huang, L.: Global continuation of nonlinear waves in a ring of neurons. Proc. Roy. Soc. Edinburgh A, 135, 999–1015 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Guo, S., Huang, L.: Nonlinear waves in a ring of neurons with delays. IMA J. Appl. Math., 71, 496–518 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, J., Faria, T., Huang, Y. S.: Synchronization and stable phase-locking in a network of neurons with memory. Math. Comput. Modelling, 30, 117–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bélair, J., Campbell, S. A., van den Driessche, P.: Frustration, stability and delay-induced oscillations in a neural network model. SIAM J. Appl. Math., 56, 245–255 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bélair, J., Campbell, S. A.: Stability and bifurcations of equilibria in a multiple-delayed differential equation. SIAM J. Appl. Math., 54, 1402–1424 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Campbell, S. A., Ncube, I., Wu, J.: Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system. Phys. D, 214, 101–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Campbell, S. A., Yuan, Y., Bungay, S. D.: Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling. Nonlinearity, 18, 2827–2846 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yuan, Y., Campbell, S. A.: Stability and synchronization of a ring of identical cells with delayed coupling. J. Dynam. Diff. Eqn., 16, 709–744 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Knobloch, E.: Normal form coefficients for the nonresonant double Hopf bifurcation. Phys. Lett. A, 116, 365–369 (1986)

    Article  MathSciNet  Google Scholar 

  44. Takens, F.: Singularities of vector fields. Inst. Hautes Études Sci. Publ. Math., 43, 47–100 (1974)

    Article  MathSciNet  Google Scholar 

  45. Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory, 2nd edition, Springer-Verlag, New York, 1998

    MATH  Google Scholar 

  46. Keller, H.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Applications of Bifurcation Theory (P. Rabinowitz eds.), Academic Press, New York, 1977, 359–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang Jiang Guo.

Additional information

The first author is supported by NSFC (Grant No. 10971057), the Key Project of Chinese Ministry of Education (Grant No. [2009]41), and by Hu’nan Provincial Natural Science Foundation (Grant No. 10JJ1001), and by the Fundamental Research Funds for the Central Universities, Hu’nan University; the second author is supported by NSERC of Canada and by ERA Program of Ontario; the third author is supported in part by MITACS, CRC, and NSERC of Canada

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S.J., Chen, Y.M. & Wu, J.H. Equivariant normal forms for parameterized delay differential equations with applications to bifurcation theory. Acta. Math. Sin.-English Ser. 28, 825–856 (2012). https://doi.org/10.1007/s10114-011-9718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-011-9718-2

Keywords

MR(2000) Subject Classification

Navigation