Skip to main content
Log in

Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity are discussed. Necessary and sufficient conditions for approximate strong duality results are derived. Conditions for an approximate exact penalty representation in the framework of augmented Lagrangian are given. Under certain conditions, it is shown that any limit point of a sequence of stationary points of approximate augmented Lagrangian problems is a KKT point of the original semidefinite program and that a sequence of optimal solutions to augmented Lagrangian problems converges to a solution of the original semidefinite program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review, 38, 49–95, (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ghaoui, L. E., Niculescu, S. I.: Advances in Linear Matrix Inequality Methods in Control, Advances in Design Control, SIAM, Philadelphia, 2000

  3. Nesterov, Y., Wolkowicz, H., Ye, Y.: Semidefinite programming relaxations of nonconvex quadratic optimization, in Handbook of Semidefinite Programming, Wolkowicz, H., Saigal, R. and Vandenberghe (eds), Kluwer, Boston, 2000

  4. Ye, Y.: Interior Point Algorithms: Theory and Analysis, John Wiley & Son, New York, 1997

  5. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds): Handbook of semidefinite programming, theory, algorithms and applications, International Series in Operations Research and Management Science, Vol. 27, Kluwer Academic Publishers, Boston, MA, 2000

  6. Todd, M.: Semidefinite Optimization. Acta Numerica, 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kanzow, C., Nagel, C.: Semidefinite programs: new search directions, smoothing–type methods, and numerical results. SIAM J. Optimization, 13, 1–23 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ringertz, U. T.: Eigenvalues in optimal structural design. In: Biegler, L. T., Coleman, T. F. Conn, A. R. and Santosa, F. N. (eds), Large Scale Optimization and Applications, Part I: Optimization in Inverse Problems and Design, Vol. 92 of the IMA Volumes in Mathematics and its Applications, 135–149, Springer, New York, 1997

  9. Jarre, F.: Convex analysis on symmetric matrices, in Handbook of Semidefinite Programming, Theory, Algorithms and Applications, H. Wolkowicz, R. Saigal and Vandenberghe (eds), Kluwer Academic Publishers, 2000

  10. Fares, B., Noll, D., Apkarian, P.: Robust control via sequential semidefinite programming. SIAM J. Control and Optimization, 40, 1791–1820 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bel Tal, A., Jarre, F., Kocvara, M., Nemirovski, A., Zowe, J.: Optimal design of trusses under a nonconvex global buckling constraints. Optimization and Engineering, 1, 189–213 (2000)

    Article  MathSciNet  Google Scholar 

  12. Jarre, F.: An interior point method for semidefinite programs. Optimization and Engineering, 1, 347–372 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Overton, M. L., Womersley, R. S.: Second derivatives for optimizing eigenvalues of symmetric matrices. SIAM J. Matrix Analysis and Applications, 16, 697–718 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Mathematical Programming, Ser. B., 77, 301–320 (1997)

    Article  MATH  Google Scholar 

  15. Bonnans, J. F., Cominetti, R., Shapiro, A.: Second order optimality conditions based on second order tangent sets. SIAM J. Optimization, 9, 466–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Forsgren, A.: Optimality conditions for nonconvex semidefinite programming. Mathematical Programming, Ser. A., 88, 105–128 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mosheyev, L., Zibulevsky, M.: Penalty/barrier multiplier algorithm for semidefinite programming. Optimization Methods and Software, 13, 235–261 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Burer, S., Monteiro, R. D. C., Zhang, Y.: Solving a class of semidefinite programs via nonlinear programming. Mathematical Programming, Ser. A., 93, 97–122 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Burer, S., Monteiro, R. D. C., Zhang, Y.: Interior–point algorithms for semidefinite programming based on a nonlinear formulation. Computational Optimization and Applications, 22, 49–79 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bertsekas, D. P.: Constrained Optimization and Lagrangian Multiplier Methods, Academic Press, New York, 1982

  21. Rockafellar, R. T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal on Control and Optimization, 12, 268–285 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rockafellar, R. T.: Lagrange multipliers and optimality. SIAM Review, 35, 183–238 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Auslender, A.: Penalty methods for computing points that satisfy second–order necessary conditions. Mathematical Programming, 17, 229–238 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yang, X. Q.: An exterior point method for computing points that satisfy second–order necessary conditions for a C 1,1 optimization problem. Journal of Mathematical Analysis and Applications, 187, 118–133 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang, X. Q., Huang, X. X.: A nonlinear Lagrangian approach to constrained optimization problems. SIAM J. Optimization, 11, 1129–1144 (2001)

    Article  Google Scholar 

  26. Auslender, A.: Penalty and barrier methods: a unified framework. SIAM J. Optimization, 10, 211–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rockafellar, R. T., Wets, R. J. B.: Variational Analysis, Springer, Berlin, 1998

  28. Benson, H. Y., Vanderbei, R. J.: Solving problems with semidefinite and related constraints using interiorpoint methods for nonlinear programming, Mathematical Programming, Ser. B, Vol. 93, 2002

  29. Shapiro, A.: On differentiability of symmetric matrix valued functions, E–print available at: http://www. optimization–online.org, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Yang.

Additional information

This work is partially supported by the Postdoctoral Fellowship of The Hong Kong Polytechnic University and the Research Grants Council of Hong Kong (PolyU B–Q890)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X.X., Teo, K.L. & Yang, X.Q. Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs. Acta Math Sinica 22, 1283–1296 (2006). https://doi.org/10.1007/s10114-005-0702-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-005-0702-6

Keywords

MR (2000) Subject Classification

Navigation