Skip to main content
Log in

Exact augmented Lagrangian functions for nonlinear semidefinite programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study augmented Lagrangian functions for nonlinear semidefinite programming (NSDP) problems with exactness properties. The term exact is used in the sense that the penalty parameter can be taken appropriately, so a single minimization of the augmented Lagrangian recovers a solution of the original problem. This leads to reformulations of NSDP problems into unconstrained nonlinear programming ones. Here, we first establish a unified framework for constructing these exact functions, generalizing Di Pillo and Lucidi’s work from 1996, that was aimed at solving nonlinear programming problems. Then, through our framework, we propose a practical augmented Lagrangian function for NSDP, proving that it is continuously differentiable and exact under the so-called nondegeneracy condition. We also present some preliminary numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Namely, that \(\inf _{\Vert x\Vert = 1} \Vert Ax - Bx\Vert = \sigma _{\min }(A-B) \ge \sigma _{\min }(A) - \sigma _{\max }(B)\).

References

  1. André, T.A., Silva, P.J.S.: Exact penalties for variational inequalities with applications to nonlinear complementarity problems. Comput. Optim. Appl. 47(3), 401–429 (2010)

    Article  MathSciNet  Google Scholar 

  2. Andreani, R., Fukuda, E.H., Silva, P.J.S.: A Gauss-Newton approach for solving constrained optimization problems using differentiable exact penalties. J. Optim. Theory Appl. 156(2), 417–449 (2013)

    Article  MathSciNet  Google Scholar 

  3. Apkarian, P., Noll, D., Tuan, H.D.: Fixed-order \({H}_\infty \) control design via a partially augmented Lagrangian method. Int. J. Robust Nonlinear 13(12), 1137–1148 (2003)

    Article  MathSciNet  Google Scholar 

  4. Ben-Tal, A., Jarre, F., Kočvara, M., Nemirovski, A., Zowe, J.: Optimal design of trusses under a nonconvex global buckling constraint. Optim. Eng. 1(2), 189–213 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas, 2nd edn. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  6. Bertsekas, D.P.: Constrained Optimization and Lagrange Multipliers Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  7. Birgin, E.G., Martínez, J.M.: Practical augmented Lagrangian methods for constrained optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014)

    Book  Google Scholar 

  8. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  9. Correa, R., Ramírez, C.H.: A global algorithm for nonlinear semidefinite programming. SIAM J. Optim. 15(1), 303–318 (2004)

    Article  MathSciNet  Google Scholar 

  10. Di Pillo, G., Grippo, L.: A new class of augmented Lagrangians in nonlinear programming. SIAM J. Control Optim. 17(5), 618–628 (1979)

    Article  MathSciNet  Google Scholar 

  11. Di Pillo, G., Grippo, L.: A new augmented Lagrangian function for inequality constraints in nonlinear programming. J. Optim. Theory Appl. 36(4), 495–519 (1982)

    Article  MathSciNet  Google Scholar 

  12. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27(6), 1333–1360 (1989)

    Article  MathSciNet  Google Scholar 

  13. Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L.: An exact augmented Lagrangian function for nonlinear programming with two-sided constraints. Comput. Optim. Appl. 25, 57–83 (2003)

    Article  MathSciNet  Google Scholar 

  14. Di Pillo, G., Lucidi, S.: On exact augmented Lagrangian functions in nonlinear programming. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications, pp. 85–100. Springer, Boston (1996)

    Chapter  Google Scholar 

  15. Di Pillo, G., Lucidi, S.: An augmented Lagrangian function with improved exactness properties. SIAM J. Optim. 12(2), 376–406 (2001)

    Article  MathSciNet  Google Scholar 

  16. Fares, B., Apkarian, P., Noll, D.: An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory. Int. J. Control 74(4), 348–360 (2001)

    Article  MathSciNet  Google Scholar 

  17. Fiala, J., Kočvara, M., Stingl, M.: PENLAB: A MATLAB solver for nonlinear semidefinite optimization. ArXiv e-prints (2013)

  18. Forsgren, A.: Optimality conditions for nonconvex semidefinite programming. Math. Program. 88(1), 105–128 (2000)

    Article  MathSciNet  Google Scholar 

  19. Fukuda, E.H., Silva, S.P.J., Fukushima, M.: Differentiable exact penalty functions for nonlinear second-order cone programs. SIAM J. Optim. 22(4), 1607–1633 (2012)

    Article  MathSciNet  Google Scholar 

  20. Glad, T., Polak, E.: A multiplier method with automatic limitation of penalty growth. Math. Program. 17(2), 140–155 (1979)

    Article  MathSciNet  Google Scholar 

  21. Han, L.: The differentiable exact penalty function for nonlinear semidefinite programming. Pac. J. Optim. 10(2), 285–303 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Higham, N.J.: Computing the nearest correlation matrix—a problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002)

    Article  MathSciNet  Google Scholar 

  23. Jarre, F.: Elementary optimality conditions for nonlinear SDPs. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research and Management Science, vol. 166, pp. 455–470. Springer, Berlin (2012)

    Chapter  Google Scholar 

  24. Kanno, Y., Takewaki, I.: Sequential semidefinite program for maximum robustness design of structures under load uncertainty. J. Optim. Theory Appl. 130(2), 265–287 (2006)

    Article  MathSciNet  Google Scholar 

  25. Konno, H., Kawadai, N., Wu, D.: Estimation of failure probability using semi-definite logit model. Comput. Manag. Sci. 1(1), 59–73 (2003)

    Article  Google Scholar 

  26. Kočvara, M., Stingl, M.: Solving nonconvex SDP problems of structural optimization with stability control. Optim. Methods Softw. 19(5), 595–609 (2004)

    Article  MathSciNet  Google Scholar 

  27. Lewis, A.S.: Convex analysis on the Hermitian matrices. SIAM J. Optim. 6(1), 164–177 (1996)

    Article  MathSciNet  Google Scholar 

  28. Lourenço, B.F., Fukuda, E.H., Fukushima, M.: Optimality conditions for nonlinear semidefinite programming via squared slack variables. Math. Program. 168(1), 177–200 (2018)

    Article  MathSciNet  Google Scholar 

  29. Lucidi, S.: New results on a class of exact augmented Lagrangians. J. Optim. Theory Appl. 58(2), 259–282 (1988)

    Article  MathSciNet  Google Scholar 

  30. Noll, D.: Local convergence of an augmented Lagrangian method for matrix inequality constrained programming. Optim. Methods Softw. 22(5), 777–802 (2007)

    Article  MathSciNet  Google Scholar 

  31. Qi, H., Sun, D.: An augmented Lagrangian dual approach for the H-weighted nearest correlation matrix problem. IMA J. Numer. Anal. 31(2), 491–511 (2011)

    Article  MathSciNet  Google Scholar 

  32. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(1), 301–320 (1997)

    Article  MathSciNet  Google Scholar 

  33. Shapiro, A., Sun, J.: Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29(3), 479–491 (2004)

    Article  MathSciNet  Google Scholar 

  34. Tseng, P.: Merit functions for semi-definite complementarity problems. Math. Program. 83, 159–185 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Yamashita, H., Yabe, H.: A survey of numerical methods for nonlinear semidefinite programming. J. Oper. Res. Soc. Jpn. 58(1), 24–60 (2015)

    Article  MathSciNet  Google Scholar 

  36. Yamashita, H., Yabe, H., Harada, K.: A primal-dual interior point method for nonlinear semidefinite programming. Math. Program. 135(1–2), 89–121 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their suggestions which improved the original version of the paper. We are also thankful to Akiko Kobayashi for valuable discussions about exact augmented Lagrangian functions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen H. Fukuda.

Additional information

This work was supported by the Grant-in-Aid for Young Scientists (B) (26730012) and for Scientific Research (B) (15H02968) from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, E.H., Lourenço, B.F. Exact augmented Lagrangian functions for nonlinear semidefinite programming. Comput Optim Appl 71, 457–482 (2018). https://doi.org/10.1007/s10589-018-0017-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0017-z

Keywords

Navigation