Skip to main content

Advertisement

Log in

Soil organic carbon monitoring to assess agricultural climate change adaptation practices in Navarre, Spain

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Climate change adaptation strategies are needed for agriculture, one of the most vulnerable human activities. In Navarre, North of Spain, ongoing adaptive management practices were identified and promoted in the framework of a regional adaptation strategy. Most include practices aiming to increase topsoil organic carbon (SOC) in agricultural land. In this work, the effectiveness of these practices (conservation agriculture, crop rotations, additions of organic matter, irrigation, and controlled grazing management) was assessed by means of monitoring SOC in a network of 159 agricultural fields across the region. These fields were selected across bioclimatic zones, where soil vulnerabilities and land-uses were previously assessed, to represent the most widespread conditions in the region. A sampling protocol designed to compare SOC stocks in plots with equal soil conditions within each zone, and with or without adaptive practices, allowed the determination of their effect size (measured as response ratios, RR). Exogenous organic matter addition was the most effective practice for SOC storage (RR 95% confidence interval (CI) [1.25–1.37]) across the region. Controlled grazing also resulted in net SOC gains (RR CI [1.13–1.42]) in temperate and semiarid grasslands. Conservation agriculture seemed to be more effective in the driest zone (RR CI [1.30–1.53]) than in the more humid ones (RR CI [0.98–1.21]). Irrigation also displayed a net positive effect (RR CI [1.17–1.34]), modulated by irrigated crop management, whereas crop rotations had an overall negative impact vs. monoculture (RR CI [0.84–0.96]), likely by their interaction with irrigation. These results confirm the variability in SOC responses to changes in management, and SOC as an indicator for assessing regional adaptation practices, although other biophysical, agronomic, and socio-economic factors also need to be accounted for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalde H, Gonzalez P, Gytarsky M, Krug T, Kurz WA et al (2006) IPCC chapter 2 generic methodologies applicable to multiple land-use categories. 2006 IPCC Guidel Natl Greenh Gas Invent 1–59. https://doi.org/10.1016/j.phrs.2011.03.002

  • Abdalla M, Hastings A, Chadwick DR, Jones DL, Evans CD et al (2018) Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric Ecosyst Environ 253:62–81. https://doi.org/10.1016/j.agee.2017.10.023

  • Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services—a global review. Geoderma 262:101–111. https://doi.org/10.1016/j.geoderma.2015.08.009

    Article  CAS  Google Scholar 

  • Aguilera E, Lassaletta L, Gattinger A, Gimeno BS (2013) Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis. Agric Ecosyst Environ 168:25–36. https://doi.org/10.1016/j.agee.2013.02.003

    Article  Google Scholar 

  • Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35:869–890. https://doi.org/10.1007/s13593-015-0285-2

    Article  Google Scholar 

  • Álvaro-Fuentes J, Easter M, Paustian K (2012) Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric Ecosyst Environ 155:87–94. https://doi.org/10.1016/j.agee.2012.04.001

    Article  CAS  Google Scholar 

  • Angers DA, Eriksen-Hamel NS (2008) Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci Soc Am J 72:1370–1374. https://doi.org/10.2136/sssaj2007.0342

    Article  CAS  Google Scholar 

  • Antón R, Virto I, Gonzalez J, Hernandez I, Enrique A et al (2019) Extension of irrigation in semi-arid regions: What challenges for soil security? Perspectives from a regional-scale project in Navarre (Spain). In: de Forges AR, Carré F, McBratney AB, Johan Bouma DA (eds) Global Soil Security. Towards more science-society interfaces. CRC Press, Balkema, pp 79–87

  • Autret B, Mary B, Chenu C, Balabane M, Girardin C et al (2016) Alternative arable cropping systems: A key to increase soil organic carbon storage? Results from a 16 year field experiment. Agric Ecosyst Environ 232:150–164. https://doi.org/10.1016/j.agee.2016.07.008

  • Barré P, Fernandez-Ugalde O, Virto I, Velde B, Chenu C (2014) Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: Incomplete knowledge and exciting prospects. Geoderma 235–236:382–395. https://doi.org/10.1016/j.geoderma.2014.07.029

  • Bescansa P, Imaz MJ, Virto I, Enrique A, Hoogmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res 87:19–27. https://doi.org/10.1016/j.still.2005.02.028

  • Bhattacharya SS, Kim K-H, Das S, Uchimiya M, Jeon BH et al (2016) A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem. J Environ Manage 167:214–227. https://doi.org/10.1016/j.jenvman.2015.09.042

  • Casby-Horton S, Herrero J, Rolong NA (2015) Gypsum soils—their morphology, classification, function, and landscapes. Adv Agron 130:231–290. https://doi.org/10.1016/bs.agron.2014.10.002

    Article  Google Scholar 

  • Chen S, Arrouays D, Angers DA, Chenu C, Barré P et al (2019) National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Sci Total Environ 666:355–367. https://doi.org/10.1016/j.scitotenv.2019.02.249

  • Chenu C, Angers DA, Barré P, Derrien D, Arrouays D et al (2019) Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res 188:41–52. https://doi.org/10.1016/j.still.2018.04.011

  • Costantini EAC, Antichi D, Almagro M, Hedlund K, Sarno G et al (2020) Local adaptation strategies to increase or maintain soil organic carbon content under arable farming in Europe: Inspirational ideas for setting operational groups within the European innovation partnership. J Rural Stud 79:102–115. https://doi.org/10.1016/j.jrurstud.2020.08.005

  • Da Gama JT, Nunes JR, Loures L, Lopez-Piñeiro A, Vivas P (2019) Assessing spatial and temporal variability for some edaphic characteristics of Mediterranean rainfed and irrigated soils. Agronomy 9(3):132. https://doi.org/10.3390/agronomy9030132

  • de Brogniez D, Ballabio C, Stevens A, Jones RJA, Montanarella L et al (2015) A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur J Soil Sci 66:121–134. https://doi.org/10.1111/ejss.12193

  • Demenois J, Torquebiau E, Arnoult MH, Eglin T, Masse D et al (2020) Barriers and strategies to boost soil carbon sequestration in agriculture. Front Sustain Food Syst 4:37. https://doi.org/10.3389/fsufs.2020.00037

  • Dignac MF, Derrien D, Barré P, Barot S, Cécillon L et al (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron Sustain Dev 37. https://doi.org/10.1007/s13593-017-0421-2

  • Dimassi B, Mary B, Wylleman R, Labreuche JO, Couture D et al (2014) Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric Ecosyst Environ 188:134–146. https://doi.org/10.1016/j.agee.2014.02.014

  • Domingo-Olivé F, Bosch-Serra ÀD, Yagüe MR, Poch RM, Boixadera J (2016) Long term application of dairy cattle manure and pig slurry to winter cereals improves soil quality. Nutr Cycl Agroecosystems 104:39–51. https://doi.org/10.1007/s10705-015-9757-7

  • Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538. https://doi.org/10.4141/cjss95-075

    Article  CAS  Google Scholar 

  • FAO (2017). Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations. Rome, Italy. ISBN: 978-92-5-109681-9

  • FAO (2018) Tracking adaptation in agricultural sectors. Food and Agriculture Organization of the United Nations. Rome, Italy. isbn:978-92-5-130020-6

    Google Scholar 

  • FAO (2013) Cllimate-smart agriculture. Sourcebook. Food and Agriculture Organization of the United Nations, Rome, Italy. isbn:978-92-5-107720-7

    Google Scholar 

  • Fernandez-Ugalde O, Barre P, Virto I, Hubert F, Billiou D et al (2016) Does phyllosilicate mineralogy explain organic matter stabilization in different particle-size fractions in a 19-year C-3/C-4 chronosequence in a temperate Cambisol? Geoderma 264:171–178. https://doi.org/10.1016/j.geoderma.2015.10.017

  • Fernández-Ugalde O, Virto I, Bescansa P, Imaz MJ, Enrique A et al (2009) No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res 106:29–35. https://doi.org/10.1016/j.still.2009.09.012

  • Francaviglia R, Di Bene C, Farina R, Salvati L, Vicente-Vicente JL (2019) Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: a comprehensive data analysis. Mitig Adapt Strateg Glob Chang 24:795–818. https://doi.org/10.1007/s11027-018-9832-x

  • Gartzia-Bengoetxea N, Virto I, Arias-González A, Enrique A, Fernández-Ugalde O et al (2020) Mineral control of organic carbon storage in acid temperate forest soils in the Basque Country. Geoderma 358:113998. https://doi.org/10.1016/j.geoderma.2019.113998

  • Gobierno de Navarra (2017) Hoja de Ruta Cambio Climático de Navarra (HCCN) 2017-2030-2050

  • Gobierno de Navarra (2020) Meteorología y climatolofía de Navarra (Metherology and Climatology of Navarre)

  • González-Sánchez EJ, Ordóñez-Fernández R, Carbonell-Bojollo R, Veroz-González O, Gil-Ribes JA (2012) Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res 122:52–60. https://doi.org/10.1016/j.still.2012.03.001

  • Gonzalez-Sanchez EJ, Veroz-Gonzaelz O, Blanco-Roldan GL, Marquez-Garcia F, Carbonell-Bojollo R (2015) A renewed view of conservation agriculture and its evolution over the last decade in Spain. Soil Tillage Res 146:204. https://doi.org/10.1016/j.still.2014.10.016

  • Hamidov A, Helming K, Bellocchi G, Bojar W, Dalgaard T et al (2018) Impacts of climate change adaptation options on soil functions: A review of European case-studies. L Degrad Dev 29:2378–2389. https://doi.org/10.1002/ldr.3006

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response-ratios in experimental ecology. Ecology 80:1150–1156. https://www.jstor.org/stable/177062

  • IDENA (2020) IDENA (Infraestructura de Datos Espaciales de Navarra)

  • Iglesias A, Garrote L, Quiroga S, Moneo M (2012) A regional comparison of the effects of climate change on agricultural crops in Europe. Clim Chang 112:29–46. https://doi.org/10.1007/s10584-011-0338-8

    Article  Google Scholar 

  • Imaz MJ, Virto I, Bescansa P, Enrique A, Fernandez-Ugalde O et al (2010) Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland. Soil Tillage Res 107:17–25. https://doi.org/10.1016/j.still.2010.02.003

  • IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan

    Google Scholar 

  • IPCC (2014) IPCC, 2014: Summary for policymakers. In: [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy SM, P.R. Mastrandrea LLW (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. ambridge University Press, Cambridge, United Kingdom and New York, New York, NY, USA, p 32

  • Jebari A, del Prado A, Pardo G, Rodríguez Martín JA, Álvaro-Fuentes J (2018) Modeling regional effects of climate change on soil organic carbon in Spain. J Environ Qual 47:644–653. https://doi.org/10.2134/jeq2017.07.0294

  • Jia G, Shevliakova E, Artaxo P, De Noblet-Decoudré N, Houghton R et al (2019) In: Shukla PR, Skea J, Buendia EC, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Pereira JP, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Land–climate interactions. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems In press

  • Johannes A, Matter A, Schulin R, Weisskopf P, Baveye PC et al (2017) Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma 302:111. https://doi.org/10.1016/j.geoderma.2017.05.009

  • Karlen DL, Peterson GA, Westfall DG (2014) Soil and water conservation: our history and future challenges. Soil Sci Soc Am J 78:1493–1499. https://doi.org/10.2136/sssaj2014.03.0110

    Article  CAS  Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17. https://doi.org/10.5751/ES-05035-170440

  • Kuzyakov Y, Zamanian K (2019) Reviews and syntheses: agropedogenesis-humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences 16:4783–4803. https://doi.org/10.5194/bg-16-4783-2019

    Article  CAS  Google Scholar 

  • Lal R (2020) Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Sci Plant Nutr 66:1–9. https://doi.org/10.1080/00380768.2020.1718548

    Article  CAS  Google Scholar 

  • Lasco RD, Ogle S, Raison J, Verchot L, Wassmann R et al (2006) Chapter 5. Cropland. In: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate change (IPCC)

  • Liu C, Cutforth H, Chai Q, Gan Y (2016) Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron Sustain Dev 36:69. https://doi.org/10.1007/s13593-016-0404-8

    Article  CAS  Google Scholar 

  • Maillard É, Angers DA (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Chang Biol 20:666–679. https://doi.org/10.1111/gcb.12438

    Article  Google Scholar 

  • Mary B, Clivot H, Blaszczyk N, Labreuche J, Ferchaud F et al (2020) Soil carbon storage and mineralization rates are affected by carbon inputs rather than physical disturbance : Evidence from a 47-year tillage experiment. Agric Ecosyst Environ 299:106972. https://doi.org/10.1016/j.agee.2020.106972

  • McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570. https://doi.org/10.1890/13-0616.1

    Article  CAS  Google Scholar 

  • Meurer KHE, Haddaway NR, Bolinder MA, Kätterer T (2018) Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil—a systematic review using an ESM approach. Earth-Sci Rev 177:613–622. https://doi.org/10.1016/j.earscirev.2017.12.015

    Article  CAS  Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

  • Nunes JM, López-Piñeiro A, Albarrán A, Muñoz A, Coelho J (2007) Changes in selected soil properties caused by 30 years of continuous irrigation under Mediterranean conditions. Geoderma 139:321–328. https://doi.org/10.1016/j.geoderma.2007.02.010

  • Olsson L, Barbosa H (2020) Land degradation. In: eport, Climate Change and Land: an IPCC special on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, pp 471–498

  • Papadakis J (1952) Agricultural geography of the world [climate, growth rate and rhythm, vegetation, soils, crops, agricultural regions]. Buenos Aires

  • Paustian K, Collier S, Baldock J, Burgess R, Creque J et al (2019) Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manag 10:567–587. https://doi.org/10.1080/17583004.2019.1633231

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP et al (2016) Climate-smart soils. Nature 532:49–57. https://doi.org/10.1038/nature17174

  • Pejenaute Goñi JM (2017) Navarra. Geografía, Pamplona, Spain

    Google Scholar 

  • Peralta J, Biurrum I, García-Mijangos I, Remón JL, Olano JM et al (2013) Manual de Hábitats de Navarra Pittelkow CM, Liang X, Linquist BA, van Groenigen KJ, Lee J et al (2014) Productivity limits and potentials of the principles of conservation agriculture. Nature 517. https://doi.org/10.1038/nature13809

  • Pittelkow CM, Liang X, Linquist BA et al (2014) Productivity limits and potentials of the principles of conservation agriculture. Nature 517. https://doi.org/10.1038/nature13809

  • Pittelkow CM, Linquist BA, Lundy ME, Liang X, van Groenigen KJ et al (2015) When does no-till yield more? A global meta-analysis. Field Crops Research 183:156–168. https://doi.org/10.1016/j.fcr.2015.07.020

  • Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. https://doi.org/10.1016/j.geoderma.2012.08.003

    Article  CAS  Google Scholar 

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric Ecosyst Environ 200:33–41. https://doi.org/10.1016/j.agee.2014.10.024

    Article  CAS  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55. https://doi.org/10.1111/j.1365-2389.2010.01342.x

    Article  CAS  Google Scholar 

  • Prokopy LS, Floress K, Arbuckle JG, Church SP, Eanes FR et al (2019) Adoption of agricultural conservation practices in the United States: Evidence from 35 years of quantitative literature. J Soil Water Conserv 74:520–534. https://doi.org/10.2489/jswc.74.5.520

  • Rivas-Martinez S (2005) Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst 139:135–144. https://doi.org/10.1080/11263500500193790

    Article  Google Scholar 

  • Rodríguez Martín JA, Álvaro-Fuentes J, Gonzalo J, Gil C, Ramos-Miras JJ et al (2016) Assessment of the soil organic carbon stock in Spain. Geoderma 264:117–125. https://doi.org/10.1016/j.geoderma.2015.10.010

  • Rodríguez Martín JA, Álvaro-Fuentes J, Gabriel JL, Gutiérrez C, Nanos N et al (2019) Soil organic carbon stock on the Majorca Island: Temporal change in agricultural soil over the last 10 years. Catena 181. https://doi.org/10.1016/j.catena.2019.104087

  • Rowley MC, Grand S, Verrecchia ÉP (2018) Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137:27–49. https://doi.org/10.1007/s10533-017-0410-1

    Article  CAS  Google Scholar 

  • Rumpel C, Amiraslani F, Chenu C, Garcia Cardenas M, Kaonga M et al (2020) The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 49:350–360. https://doi.org/10.1007/s13280-019-01165-2

  • Shekhar A, Shapiro CA (2019) What do meteorological indices tell us about a long-term tillage study? Soil Tillage Res 193:161–170. https://doi.org/10.1016/j.still.2019.06.004

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63:1350–1358. https://doi.org/10.2136/sssaj1999.6351350x

  • Smith P, Soussana JF, Angers D, Schipper L, Chenu C et al (2019) How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob Chang Biol:1–23. https://doi.org/10.1111/gcb.14815

  • Soil Survey Staff (2014) Keys to soil taxonomy. USDA, Madison, WI, USA

  • Soussana JF, Lutfalla S, Ehrhardt F, Rosenstock T, Lamanna C et al (2019) Matching policy and science: Rationale for the ‘4 per 1000 - soils for food security and climate’ initiative. Soil Tillage Res 188:3–15. https://doi.org/10.1016/j.still.2017.12.002

  • Stolbovoy V, Montanarella L, Filippi N, Jones A, Gallego J et al (2007) Soil sampling protocol to certify the changes of organic carbon stock in mineral soil of the European Union, Version 2. EUR 21576 EN/2. 56 pp. Office for Official Publications of the European Communities, Luxembourg. ISBN: 978-92-79-05379-5

  • Tiessen H, Moir JO (1993) Total and organic C. In: Carter MR (ed) Soil sampling and methods of analysis. CRC Press, Ottawa, ON, Canada, pp 187–199

    Google Scholar 

  • Trost B, Prochnow A, Drastig K, Meyer-Aurich A, Ellmer F et al (2013) Irrigation, soil organic carbon and N2O emissions. A review. Agron Sustain Dev 33:733–749. https://doi.org/10.1007/s13593-013-0134-0

  • Tugel AJ, Wills SA, Herrick JE (2008) Soil Change Guide: Procedures for Soil Survey and Resource Inventory, Version 1.1. USDA, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor. J Stat Softw 36:1–48. https://doi.org/10.18637/jss.v036.i03

  • Virto I, Imaz MJ, Fernández-Ugalde O, Gartzia-Bengoetxea N, Enrique A et al (2015) Soil degradation and soil quality in Western Europe: Current situation and future perspectives. Sustain 7:313–365. https://doi.org/10.3390/su7010313

  • Virto I, Bescansa P, Imaz MJ, Enrique A (2006) Soil quality under food-processing wastewater irrigation in semi-arid land, northern Spain: aggregation and organic matter fractions. J Soil Water Conserv 61:398–407

    Google Scholar 

  • Virto I, Imaz MJ, Fernández-Ugalde O et al (2015) Soil degradation and soil quality in Western Europe: current situation and future perspectives. Sustain 7:313–365. https://doi.org/10.3390/su7010313

    Article  Google Scholar 

  • White RE, Davidson B, Lam SK, Chen D (2018) A critique of the paper ‘Soil carbon 4 per mille” by Minasny et al. (2017).’ Geoderma 309:115–117. https://doi.org/10.1016/j.geoderma.2017.05.025

  • Wiesmeier M, Hübner R, Barthold F, Spörlein P, Geuß U et al (2013) Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agric Ecosyst Environ 176:39–52. https://doi.org/10.1016/j.agee.2013.05.012

  • Wiesmeier M, Mayer S, Burmeister J, Hübner R, Kögel-Knabner I (2020) Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios. Geoderma 369:114333. https://doi.org/10.1016/j.geoderma.2020.114333

  • Zhou X, Zhou L, Nie Y, Fu Y, Du Z et al (2016) Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta analysis. Agric Ecosyst Environ 228:70–81. https://doi.org/10.1016/j.agee.2016.04.030

Download references

Acknowledgements

This work was funded by the European Commission LIFE program (Project LIFE Nadapta, LIFE 16 IPC/ES/000001). We thank Javier Peralta for assessment and kind support in the analysis of vegetation series and zoning. Jokin del Valle and Javier Eslava (Government of Navarre) are thanked for assistance in soil characterization and cartographic information. We also thank José Luis Saez (INTIA) and INTIA staff for assistance in grassland identification and sampling. Iñigo Ayechu (INTIA) and Conchi González (UPNA) are thanked for field and laboratory assistance. Rodrigo Antón was awarded a predoctoral fellowship by Universidad Pública de Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñigo Virto.

Additional information

Communicated by Claire Chenu and accepted by Topical Collection Chief Editor Christopher Reyer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regional management practices with positive effects on soil carbon to meet the goals of the 4p1000 initiative

Supplementary Information

ESM 1

(PDF 374 kb)

ESM 2

(PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antón, R., Arricibita, F.J., Ruiz-Sagaseta, A. et al. Soil organic carbon monitoring to assess agricultural climate change adaptation practices in Navarre, Spain. Reg Environ Change 21, 63 (2021). https://doi.org/10.1007/s10113-021-01788-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10113-021-01788-w

Keywords

Navigation