Skip to main content

Advertisement

Log in

A regional comparison of the effects of climate change on agricultural crops in Europe

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The effects of climate change will be felt by most farmers in Europe over the next decades. This study provides consistent results of the impact of climate change on arable agriculture in Europe by using high resolution climate data, socio-economic data, and impact assessment models, including farmer adaptation. All scenarios are consistent with the spatial distribution of effects, exacerbating regional disparities and current vulnerability to climate. Since the results assume no restrictions on the use of water for irrigation or on the application of agrochemicals, they may be considered optimistic from the production point of view and somewhat pessimistic from the environmental point of view. The results provide an estimate of the regional economic impact of climate change, as well as insights into the importance of mitigation and adaptation policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bosello F, Zang J (2005) Assessing climate change impacts: agriculture. Fondazione Eni Enrico Mattei (FEEM), Italy

    Google Scholar 

  • Brockmeier M (2000) A graphical exposition of the GTAP model, GTAP Technical paper No. 8

  • Brooks N, Adger WN, Kelly PM (2005) The determinants of vulnerability and adaptive capacity at the national level and implications for adaptation. Glob Environ Chang 15:151–163

    Article  Google Scholar 

  • Burton I, Lim B (2005) Achieving adequate adaptation in agriculture. Clim Chang 70(1–2):191–200

    Article  Google Scholar 

  • Carter TR (2010) Assessing impacts of climate change: an editorial essay. Wiley Interdisciplinary Reviews: Climate Change 1(4):479–482. www.wires.wiley.com/climatechange

  • Challinor AJ, Wheeler TR, Slingo JM, Craufurd PQ, Grimes DIF (2005) Simulation of crop yields using ERA-40: limits to skill and nonstationarity in weather–yield relationships. J Appl Meteorol 44(4):516–531

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis GT (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Chang 81(suppl 1):1–6

    Article  Google Scholar 

  • Christensen OB, Goodess CM, Ciscar JC (2011) Methodological framework of the PESETA project on the impacts of climate change in Europe. Climatic Change

  • COM (2009) Commission of the European Communities, White Paper Adapting to climate change: Towards a European framework for action. COM(2009) 147 final

  • Darwin R (2004) Effects of greenhouse gas emissions on world agriculture, food consumption, and economic welfare. Clim Chang 66:191–238

    Article  Google Scholar 

  • EEA (2008) Impacts of climate change in Europe: an indicator based report

  • FAOSTAT (2010) FAO Online Database. Food and Agriculture Organization of the United Nations, Rome. Available online at: http://faostat.fao.org. (Last Accessed 28 May 2010)

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104

    Article  Google Scholar 

  • Grubb M, Köhler J, Anderson D (2002) Induced technical change in energy and environmental modeling: analytic approaches and policy implications. Annu Rev Energ Environ 27:271–308

    Article  Google Scholar 

  • Gupta J, Olzthoorn X, Rotemberg E (2003) The role of scientific uncertainty in compliance with the Kyoto protocol to the climate change convention. Environ Sci Pol 6:475–486

    Article  Google Scholar 

  • Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2005) Future contributions of crop modeling:/from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Europ J Agronomy 18:15–31

    Article  Google Scholar 

  • Hansen JW, Jones JW (2000) Scaling-up crop models for climate variability applications. Agr Syst 65:43–72

    Article  Google Scholar 

  • Hardaker JB, Huirne RBM, Anderson JR, Lien G (2004) Coping with risk in agriculture, 2nd edn. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Hertel TW (1997) Global trade analysis: modelling and applications. Cambridge University Press

  • Holden NH, Brereton AJ (2004) Definition of agro-climatic regions in Ireland using hydro-thermal and crop yield data. Agr Forest Meteorol 122(3–4):175–191

    Article  Google Scholar 

  • Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Nat Acad Sci 104:19691–19696. doi:10.1073/pnas.0701890104

    Article  Google Scholar 

  • Iglesias A, Cancelliere A, Cubillo F, Garrote L, Wilhite DA (2009) Coping with drought risk in agriculture and water supply systems: Drought management and policy development in the Mediterranean. Springer, The Netherlands

    Book  Google Scholar 

  • Iglesias A, Garrote L, Flores F, Moneo M (2007) Challenges to mange the risk of water scarcity and climate change in the Mediterranean. Water Resour Manag 21(5):227–288

    Google Scholar 

  • Iglesias A, Quiroga S (2007) Measuring cereal production risk form climate variability across geographical areas in Spain. Clim Res 34:47–57

    Article  Google Scholar 

  • Iglesias A, Quiroga S, Moneo M, Garrote L (2011) From climate change impacts to the development of adaptation strategies: challenges for agriculture in Europe. Climatic Change (this issue)

  • Iglesias A, Rosenzweig C, Pereira D (2000) Agricultural impacts of climate in Spain: developing tools for a spatial analysis. Glob Environ Chang 10:69–80

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3–4):235–265

    Article  Google Scholar 

  • Kaiser HM, Riha SJ, Wilks DS, Rossiter DG, Sampath R (1993) A farm-level analysis of economic and agronomic impacts of gradual warming. Am J Agric Econ 75:387–398

    Article  Google Scholar 

  • Lobell D, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agr Forest Meteorol 150:1443–1452

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  Google Scholar 

  • Long S, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  Google Scholar 

  • Meza FJ, Silva D (2009) Dynamic adaptation of maize and wheat production to climate change. Clim Chang 94:143–156

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard K, Manning M, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith S, Stouffer RJ, Thomson A, Weyant J, Wilbanks T (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Fries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, von Rooijen S, Victor N, Dadi Z (eds) (2000) Emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 599

  • Nordhaus WD (1993) Rolling the ‘DICE’: an optimal transition path for controlling greenhouse gases. Resource Energ Econ 15(1):27–50

    Article  Google Scholar 

  • Olesen JE, Carter TR, Díaz-Ambrona CH, Fronzek S, Heidmann T, Hickler T, Holt T, Minguez MI, Morales P, Palutikof JP, Quemada M, Ruiz-Ramos M, Rubæk GH, Sau F, Smith B, Sykes MT (2007) Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim Chang 81:123–143

    Article  Google Scholar 

  • Olesen JO, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Parry MA, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Chang 14:53–67

    Article  Google Scholar 

  • Peterson TC (2006) Examination of potential biases in air temperature caused by poor station locations. Bull Amer Meteor Soc 87:1073–1080. doi:10.1175/BAMS-87-8-1073

    Article  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Phil Trans Roy Soc B: Biol Sci 360:2021–2035

    Article  Google Scholar 

  • Quiroga S, Iglesias A (2009) A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain. Agr Syst 101:91–100

    Article  Google Scholar 

  • Reilly J, Tubiello FN, McCarl B, Abler D, Darwin R, Fuglie K, Hollinger S, Izaurralde C, Jagtap S, Jones J, Mearns L, Ojima D, Paul E, Paustian E, Riha S, Rosenberg N, Rosenzweig C (2003) US agriculture and climate change: new results. Clim Chang 57(1):43–69

    Article  Google Scholar 

  • Rosenzweig C, Iglesias A (1998) The use of crop models for international climate change impact assessment In Understanding Options for Agricultural Production, G Y Tsuji, G Hoogenboom, P K Thornton (eds) Kluwer Academic Publishers. Dordrecht, The Netherlands, pp 267–292

    Google Scholar 

  • Rosenzweig C, Iglesias A, Fischer G, Liu Y, Baethgen W, Jones JW (1999) Wheat yield functions for analysis of land-use change in China. Environ Model Assess 4:128–132

    Google Scholar 

  • Rosenzweig C, Strzepek K, Major D, Iglesias A, Yates D, Holt A, Hillel D (2004) Water availability for agriculture under climate change: five international studies. Glob Environ Chang 14:345–360

    Article  Google Scholar 

  • Rounsevell MDA, Reginster I, Araujo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpaa S, Leemas R, Metzger MJ, Schmit P, Tuck G (2006) A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68

    Article  Google Scholar 

  • Royer J-F, Roeckner E, Cubasch U, Doblas-Reyes F, Hollweg H-D, Johns T, May W, van Vuuren D (2009) Production of seasonal to decadal hindcasts and climate change scenarios. In van der Linden P, Mitchell JFB (eds) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UK, pp. 35–46. Available at: http://ensembleseu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf

  • Smith F (2009) Agriculture and the WTO: towards a new theory of International Agricultural Trade Regulation. Edward Elgar, Cheltenham, 171 pp

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop—The FAO Crop Model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101:426–437

    Article  Google Scholar 

  • Stern N, Peters S, Bakhshi V, Bowen A, Cameron C, Catovsky S, Crane D, Cruickshank S, Dietz S, Edmonson N, Garbett SL, Hamid L, Hoffman G, Ingram D, Jones B, Patmore N, Radcliffe H, Sathiyarajah R, Stock M, Taylor C, Vernon T, Wanjie H, Zenghelis D (2006) Stern review: the economics of climate change. HM Treasury, London

    Google Scholar 

  • Urwin K, Jordan A (2008) Does public policy support or undermine climate change adaptation? Exploring policy interplay across different scales of governance. Glob Environ Chang 18:180–191

    Article  Google Scholar 

  • van Vuuren DP, O’Neill BC (2006) The consistency of IPCC’s SRES scenarios to recent literature and recent projections. Clim Chang 75:9–46

    Article  Google Scholar 

  • Vose D (2000) Risk analysis: a quantitative guide. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding provided by the Peseta project of the EC-JRC and ARCO project of the Ministry of the Environment, Rural and Marine Affairs of Spain, and the comments of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Iglesias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias, A., Garrote, L., Quiroga, S. et al. A regional comparison of the effects of climate change on agricultural crops in Europe. Climatic Change 112, 29–46 (2012). https://doi.org/10.1007/s10584-011-0338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0338-8

Keywords

Navigation