Asseng S, Kheir AMS, Kassie BT, Hoogenboom G, Abdelaal AIN, Haman DZ, Ruane AC (2018) Can Egypt become self-sufficient in wheat? Environ Res Lett 13(9):94012. https://doi.org/10.1088/1748-9326/aada50
CAS
Article
Google Scholar
Bärring L, Strandberg G (2018) Does the projected pathway to global warming targets matter? Environ Res Lett 13(2):24029. https://doi.org/10.1088/1748-9326/aa9f72
Article
Google Scholar
Ben-Ari T, Boé J, Ciais P, Lecerf R, Van der Velde M, Makowski D (2018) Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat Commun 9(1):1627. https://doi.org/10.1038/s41467-018-04087-x
CAS
Article
Google Scholar
Betts RA, Alfieri L, Bradshaw C, Caesar J, Feyen L, Friedlingstein P, Gohar L, Koutroulis A, Lewis K, Morfopoulos C, Papadimitriou L, Richardson KJ, Tsanis I, Wyser K (2018) Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model. Philos Trans R Soc A Math Phys Eng Sci 376(2119):20160452. https://doi.org/10.1098/rsta.2016.0452
Article
Google Scholar
Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop Res 119(1):201–212. https://doi.org/10.1016/j.fcr.2010.07.012
Article
Google Scholar
Ceglar A, Toreti A, Prodhomme C, Zampieri M, Turco M, Doblas-Reyes FJ (2018) Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-19586-6
Ceglar A, Zampieri M, Toreti A, Dentener F (2019) Observed northward migration of agro-climate zones in europe will further accelerate under climate change. Earth’s Futur 7(9):1088–1101. https://doi.org/10.1029/2019EF001178
Article
Google Scholar
Ceglar A, Toreti A, Lecerf R, Van der Velde M, Dentener F (2016) Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agric For Meteorol 216:58–67. https://doi.org/10.1016/j.agrformet.2015.10.004
Article
Google Scholar
Chatzopoulos T, Pérez Domínguez I, Zampieri M, Toreti A (2019) Climate extremes and agricultural commodity markets: A global economic analysis of regionally simulated events. Weather Clim Extrem, 100193. https://doi.org/10.1016/j.wace.2019.100193
Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610. https://doi.org/10.2307/2289282
Article
Google Scholar
Cohn AS, Vanwey LK, Spera SA, Mustard JF (2016) Cropping frequency and area response to climate variability can exceed yield response. Nat Clim Chang 6(6):601–604. https://doi.org/10.1038/nclimate2934
Article
Google Scholar
Cramer W, Guiot J, Fader M, Garrabou J, Gattuso J-P, Iglesias A, Lange MA, Lionello P, Llasat MC, Paz S, Peñuelas J, Snoussi M, Toreti A, Tsimplis MN, Xoplaki E (2018) Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Clim Chang 8(11):972–980. https://doi.org/10.1038/s41558-018-0299-2
Article
Google Scholar
Dettori M, Cesaraccio C, Duce P (2017) Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-wheat model. Field Crop Res 206:43–53. https://doi.org/10.1016/j.fcr.2017.02.013
Article
Google Scholar
Dixit PN, Telleria R, Al Khatib AN, Allouzi SF (2018) Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan. Sci Total Environ 610–611:219–233. https://doi.org/10.1016/j.scitotenv.2017.07.270
CAS
Article
Google Scholar
Dosio A, Mentaschi L, Fischer EM, Wyser K (2018) Extreme heat waves under 1.5 and 2 degree global warming(supplementary data). Environ Res:1–9
Fontana G, Toreti A, Ceglar A, De Sanctis G (2015) Early heat waves over Italy and their impacts on durum wheat yields. Nat Hazards Earth Syst Sci 15(7):1631–1637. https://doi.org/10.5194/nhess-15-1631-2015
Article
Google Scholar
Guzmán C, Autrique JE, Mondal S, Singh RP, Govindan V, Morales-Dorantes A, Posadas-Romano G, Crossa J, Ammar K, Peña RJ (2016) Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crop Res 186:157–165. https://doi.org/10.1016/j.fcr.2015.12.002
Article
Google Scholar
Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23. https://doi.org/10.1146/annurev.es.04.110173.000245
Article
Google Scholar
Holling CS (1996) Engineering resilience versus ecological resilience. The National Academy of Sciences, Washington
Google Scholar
Kahiluoto H, Kaseva J, Balek J, Olesen JE, Ruiz-Ramos M, Gobin A, Kersebaum KC, Takáč J, Ruget F, Ferrise R, Bezak P, Capellades G, Dibari C, Mäkinen H, Nendel C, Ventrella D, Rodríguez A, Bindi M, Trnka M (2019a) Decline in climate resilience of European wheat. Proc Natl Acad Sci 116(1):123–128. https://doi.org/10.1073/pnas.1804387115
CAS
Article
Google Scholar
Kahiluoto H, Kaseva J, Olesen JE, Kersebaum KC, Ruiz-Ramos M, Gobin A, Takáč J, Ruget F, Ferrise R, Balek J, Bezak P, Capellades G, Dibari C, Mäkinen H, Nendel C, Ventrell, D, Rodríguez A, Bindi M, Trnka M (2019b) Reply to Snowdon et al. and Piepho: Genetic response diversity to provide yield stability of cultivar groups deserves attention. Proc Natl Acad Sci, 116(22), 10627–10629. https://doi.org/10.1073/pnas.1903594116
Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y (2015) Climate change in the fertile crescent and implications of the recent Syrian drought. Proc Natl Acad Sci 112(11):3241–3246. https://doi.org/10.1073/pnas.1421533112
CAS
Article
Google Scholar
Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol 31:36–43. https://doi.org/10.1016/j.pbi.2016.03.006
CAS
Article
Google Scholar
Kitoh A, Yatagai A, Alpert P (2008) First super-high-resolution model projection that the ancient “Fertile Crescent” will disappear in this century. Hydrol Res Lett 2:1–4. https://doi.org/10.3178/hrl.2.1
Article
Google Scholar
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130
Article
Google Scholar
Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts RA, Carrao H, Spinoni J, Vogt J, Feyen L (2018) Global changes in drought conditions under different levels of warming. Geophys Res Lett. https://doi.org/10.1002/2017GL076521
Nazco R, Peña RJ, Ammar K, Villegas D, Crossa J, Royo C (2014) Durum wheat (Triticum durum Desf.) Mediterranean landraces as sources of variability for allelic combinations at Glu-1/Glu-3 loci affecting gluten strength and pasta cooking quality. Genet Resour Crop Evol 61(6):1219–1236. https://doi.org/10.1007/s10722-014-0104-7
CAS
Article
Google Scholar
Portmann FT, Siebert S, Döll P (2010) MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: A new high resolution data set for agricultural and hydrological modeling. Glob Biogeochem Cycles 24:GB1011
Article
Google Scholar
Preece C, Livarda A, Christin P-A, Wallace M, Martin G, Charles M, Jones G, Rees M, Osborne CP (2017) How did the domestication of fertile crescent grain crops increase their yields? Funct Ecol 31(2):387–397. https://doi.org/10.1111/1365-2435.12760
Article
Google Scholar
Renard D, Tilman D (2019) National food production stabilized by crop diversity. Nature 571:257–260. https://doi.org/10.1038/s41586-019-1316-y
CAS
Article
Google Scholar
Rezaei EE, Siebert S, Hüging H, Ewert F (2018) Climate change effect on wheat phenology depends on cultivar change. Sci Rep 8(1):4891. https://doi.org/10.1038/s41598-018-23101-2
CAS
Article
Google Scholar
Rharrabti Y, Elhani S, Martos-Núñez V, García del Moral LF (2001) Protein and lysine content, grain yield, and other technological traits in durum wheat under mediterranean conditions. J Agric Food Chem 49(8):3802–3807. https://doi.org/10.1021/jf001139w
CAS
Article
Google Scholar
Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model Intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182. https://doi.org/10.1016/j.agrformet.2012.09.011
Article
Google Scholar
Royo C, Nazco R, Villegas D (2014) The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance. Genet Resour Crop Evol 61(7):1345–1358. https://doi.org/10.1007/s10722-014-0116-3
Article
Google Scholar
Ruane AC, Goldberg R, Chryssanthacopoulos J (2015) Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric For Meteorol 200:233–248. https://doi.org/10.1016/j.agrformet.2014.09.016
Article
Google Scholar
Sall AT, Chiari T, Legesse W, Seid-Ahmed K, Ortiz R, van Ginkel M, Bassi FM (2019) Durum wheat (Triticum durum Desf.): origin, cultivation and potential expansion in Sub-Saharan Africa. Agronomy 9(5):263. https://doi.org/10.3390/agronomy9050263
Article
Google Scholar
Shorrocks AF (1980) The class of additively decomposable inequality measures. Econometrica 48(3):613–625. https://doi.org/10.2307/1913126
Article
Google Scholar
Snowdon RJ, Stahl A, Wittkop B, Friedt W, Voss-Fels K, Ordon F, Frisch M, Dreisigacker S, Hearne SJ, Bett KE, Cuthbert RD, Bentley AR, Melchinger AE, Tuberosa R, Langridge P, Uauy C, Sorrells ME, Poland J, Pozniak CJ (2019) Reduced response diversity does not negatively impact wheat climate resilience. Proc Natl Acad Sci 116(22):10623–10624. https://doi.org/10.1073/pnas.1901882116
CAS
Article
Google Scholar
Tebaldi C, Friedlingstein P (2013) Delayed detection of climate mitigation benefits due to climate inertia and variability. Proc Natl Acad Sci 110(43):17229–17234. https://doi.org/10.1073/pnas.1300005110
Article
Google Scholar
Tebaldi C, Lobell D (2018a) Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environ Res Lett 13:065001. https://doi.org/10.1088/1748-9326/aaba48
CAS
Article
Google Scholar
Tebaldi C, Lobell D (2018b) Estimated impacts of emission reductions on wheat and maize crops. Clim Chang 146(3):533–545. https://doi.org/10.1007/s10584-015-1537-5
CAS
Article
Google Scholar
Webber H, Ewert F, Olesen JE, Müller C, Fronzek S, Ruane AC, Bourgault M, Martre P, Ababaei B, Bindi M, Ferrise R, Finger R, Fodor N, Gabaldón-Leal C, Gaiser T, Jabloun M, Kersebaum K-C, Lizaso JI, Lorite IJ et al (2018) Diverging importance of drought stress for maize and winter wheat in Europe. Nat Commun 9(1):4249. https://doi.org/10.1038/s41467-018-06525-2
CAS
Article
Google Scholar
White S (2011) The climate of rebellion in the early modern ottoman empire. Cambridge University Press https://books.google.it/books?id=or3J_GNhJOAC
Xoplaki E, Luterbacher J, Wagner S, Zorita E, Fleitmann D, Preiser-Kapeller J, Sargent AM, White S, Toreti A, Haldon JF, Mordechai L, Bozkurt D, Akçer-Ön S, Izdebski A (2018) Modelling climate and societal resilience in the eastern mediterranean in the last millennium. Hum Ecol 46(3):363–379. https://doi.org/10.1007/s10745-018-9995-9
Article
Google Scholar
Zampieri M, Ceglar A, Dentener F, Toreti A (2017) Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ Res Lett 12(6). https://doi.org/10.1088/1748-9326/aa723b
Zampieri M, Garcia GC, Dentener F, Gumma MK, Salamon P, Seguini L, Toreti A (2018) Surface freshwater limitation explains worst rice production anomaly in India in 2002. Remote Sens 10(2). https://doi.org/10.3390/rs10020244
Zampieri M, Lionello P (2010) Simple statistical approach for computing land cover types and potential natural vegetation. Clim Res 41(3). https://doi.org/10.3354/cr00846
Zampieri M, Russo S, di Sabatino S, Michetti M, Scoccimarro E, Gualdi S (2016) Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Sci Total Environ 571. https://doi.org/10.1016/j.scitotenv.2016.07.008
Zampieri M, Ceglar A, Dentener F, Dosio A, Naumann G, van den Berg M, Toreti A (2019a) When will current climate extremes affecting maize production become the norm? Earth’s Futur 7(2):113–122. https://doi.org/10.1029/2018EF000995
Article
Google Scholar
Zampieri M, Ceglar A, Manfron G, Toreti A, Duveiller G, Romani M, Rocca C, Scoccimarro E, Podrascanin Z, Djurdjevic V (2019b) Adaptation and sustainability of water management for rice agriculture in temperate regions: the Italian case study. Land Degrad Dev, 0. https://doi.org/10.1002/ldr.3402
Zampieri M, Grizzetti B, Meroni M, Scoccimarro E, Vrieling A, Naumann G, Toreti A (2019c) Annual green water resources and vegetation resilience indicators: definitions, mutual relationships, and future climate projections. Remote Sens 11(22):2708. https://doi.org/10.3390/rs11222708
Article
Google Scholar
Zampieri M, Weissteiner C, Grizzetti B, Toreti A, van den Berg M, Dentener F (2019d) Estimating resilience of annual crop production systems: Theory and limitations. ArXiv http://arxiv.org/abs/1902.02677