Abbaris A, Dakhlaoui H, Thiria S, Baragaoui Z (2014) Variational data assimilation with the YAO platform for hydrological forecasting evolving water resources systems. In: Understanding, Predicting and Managing Water-Society Interactions, vol 364. IAHS Publ, pp 1–6. https://doi.org/10.5194/piahs-364-3-2014
Addor N, Rössler O, Köplin N, Weingartner R, Seibert J (2014) Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resour Res 50(10):7541–7562. https://doi.org/10.1002/2014WR015549
Article
Google Scholar
Andréassian V, Perrin C, Michel C (2004) Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models. J Hydrol 286:19–35. https://doi.org/10.1016/j.jhydrol.2003.09.030
Article
Google Scholar
Aouissi J, Benabdallah S, Chabaane Z, Cudennec C (2016) Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—application in data-scarce rural Tunisia. Agric Water Manag 174. https://doi.org/10.1016/j.agwat.2016.03.004
Ben Fraj W, Elloumi M, Molle F (2019) The politics of interbasin transfers: socio-environmental impacts and actor strategies in Tunisia. Nat Res Forum 43:17–30. https://doi.org/10.1111/1477-8947.12165
Article
Google Scholar
Bae D-H, Jung I-W, Lettenmaier DP (2011) Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin. Korea J Hydrol 401(1–2):90–105. https://doi.org/10.1016/j.jhydrol.2011.02.012
Article
Google Scholar
Bargaoui Z, Dakhlaoui H, Houcine A (2008) Modélisation pluie-débit et classification hydroclimatique. Rev Sci Eau 21:233–245. https://doi.org/10.7202/018468ar
Article
Google Scholar
Blinda M, Thivet G (2009) Ressources et demandes en eau en Méditerranée : situation et perspectives. Sécheresse 20:9–16. https://doi.org/10.1684/sec.2009.0162
Article
Google Scholar
Brigode P, Oudin L, Perrin C (2013) Hydrological model parameter instability: a source of additional uncertainty in estimating the hydrological impacts of climate change? J Hydrol 476:410–425. https://doi.org/10.1016/j.jhydrol.2012.11.012
Article
Google Scholar
Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49(7):4187–4205. https://doi.org/10.1002/wrcr.20331
Coron L, Andréassian V, Perrin C, Lerat J, Vaze J, Bourqui M, Hendrickx F (2012) Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water Resour Res 48:W05552. https://doi.org/10.1029/2011WR011721
Article
Google Scholar
Cramer W, Guiot J, Fader M, Garrabou J, Gattuso JP, Iglesias A, Lange MA, Lionello P, Llasat MC, Paz S, Peñuelas J, Snoussi M, Toreti A, Tsimplis MN, Xoplaki E (2018) Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Clim Chang 8:972–980. https://doi.org/10.1038/s41558-018-0299-2
Article
Google Scholar
Dakhlaoui H, Bargaoui Z, Bárdossy A (2009) Comparaison de trois méthodes d’usage de la technique des voisins les plus proches en vue d’amélioration de la performance de l’algorithme SCE-UA appliqué pour le calage du modèle pluie-débit HBV. In: Hydroinformatics in Hydrology, Hydrogeology and Water Resources, vol 331. IAHS Publ, pp 139–153
Dakhlaoui H, Bargaoui Z, Bárdossy A (2012) Toward a more efficient calibration schema for HBV rainfall-runoff model. J Hydrol 444–445:161–179. https://doi.org/10.1016/j.jhydrol.2012.04.015
Article
Google Scholar
Dakhlaoui H, Ruelland D, Tramblay Y, Bargaoui Z (2017) Evaluating robustness of conceptual rainfall-runoff models under climate variability in Northern Tunisia. J Hydrol 550:201–217. https://doi.org/10.1016/j.jhydrol.2017.04.032
Article
Google Scholar
Dakhlaoui H, Ruelland D, Trambaly Y (2019) A bootstrap-based differential split-sample test to assess the transferability of conceptual rainfall-runoff models under past and future climate variability. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.05.056
Duan QY, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031. https://doi.org/10.1029/91WR02985
Article
Google Scholar
Fowler A (2002) Assessment of the validity of using mean potential evaporation in computations of the long-term soil water balance. J Hydrol 256:248–263. https://doi.org/10.1016/S0022-1694(01)00542-X
Article
Google Scholar
Fowler KJ, Peel MC, Western AW, Zhang L, Peterson TJ (2016) Simulating runoff under changing climatic conditions: revisiting an apparent deficiency of conceptual rainfall-runoff models. Water Resour Res 52(3):1820–1846. https://doi.org/10.1002/2015WR018068
Article
Google Scholar
Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003
Article
Google Scholar
Guo D, Westra S, Maier HR (2017) Impact of evapotranspiration process representation on runoff projections from conceptual rainfall-runoff models. Water Resour Res 53:435–454. https://doi.org/10.1002/2016WR019627
Article
Google Scholar
Hakala K, Addor N, Teutschbein C, Vis M, Dakhlaoui H, Seibert J (2019) Hydrological climate change impact modeling. In: Maurice P (ed) Encyclopedia of water: science, technology, and society. https://doi.org/10.1002/9781119300762.wsts0062
Hamdi N, Touihri M, Charfi F (2012) Diagnostic Ecologique du parc National Ichkeul (Tunisie) après la construction des barrages; Cas des oiseaux d’eaux. Revue d’écologie 67(1):41–62
Hartmann G, Bárdossy A (2005) Investigation of the transferability of hydrological models and a method to improve model calibration. Adv Geosci 5:83–87. https://doi.org/10.5194/adgeo-5-83-2005
Article
Google Scholar
Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. https://doi.org/10.1175/2009BAMS2607.1
Article
Google Scholar
Henia L (2008) (directed by) Atlas de l’eau en Tunisie. Publication de la Faculté des Sciences Humaines et Sociales, Tunis
Google Scholar
Institut Tunisien des Etudes Stratégiques (2014) Système Hydraulique de la Tunisie à l’horizon 2030. Tunisia 222 pp.
IPCC – Intergovernmental Panel on Climate Change (2013) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TFD, Qin G-K, Plattner M, Tignor SK, Allen J, Boschung A, Nauels Y, Xia V, Bex, Midgley PM (eds) . Cambridge University Press, Cambridge 1535 pp.
Google Scholar
Jabloun M, Sahli A (2008) Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data-application to Tunisia. Agric Water Manag 95:707–715. https://doi.org/10.1016/j.agwat.2008.01.009
Article
Google Scholar
Jakeman AI, Littlewood IG, Withehead PG (1990) Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J Hydrol 117:275–300. https://doi.org/10.1016/0022-1694(90)90097-H
Article
Google Scholar
Kingston DG, Todd MC, Taylor RG, Thompson JR, Arnellet NW (2009) Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys Res Lett 36:L20403. https://doi.org/10.1029/2009GL040267
Article
Google Scholar
Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31:13–24. https://doi.org/10.1080/02626668609491024
Article
Google Scholar
Li Z, Chen Y, Shen Y, Liu Y, Zhang S (2013) Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour Res 2013(49):2205–2212. https://doi.org/10.1002/wrcr.20202
Article
Google Scholar
Lindström G, Johanson B, Gardelin MPM, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201:272–288. https://doi.org/10.1016/S0022-1694(97)00041-3
Article
Google Scholar
Mansour M, Hachicha M, Mougou A (2017) Trend analysis of potential evapotranspiration case of Chott-Meriem region (the Sahel of Tunisia). Int J Agric Innov Res 5:703–708. https://doi.org/10.1016/j.agwat.2015.12.004
Article
Google Scholar
Marchane A, Tramblay Y, Hanich L, Ruelland D, Jarlan L (2017) Climate change impacts on surface water resources in the Rheraya catchment (High-Atlas, Morocco). Hydrol Sci J. https://doi.org/10.1080/02626667.2017.1283042
Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang:109–213. https://doi.org/10.1007/s10584-011-0156-z
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models–part I: a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6
Article
Google Scholar
Oudin L, Michel C, Anctil F (2005a) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 1-can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? J Hydrol 303:275–289. https://doi.org/10.1016/j.jhydrol.2004.08.025
Article
Google Scholar
Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005b) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2: towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J Hydrol 303:290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026
Article
Google Scholar
Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289. https://doi.org/10.1016/S0022-1694(03)00225-7
Article
Google Scholar
Prudhomme C, Williamson J (2013) Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections. Hydrol Earth Syst Sci 17:1365–1377. https://doi.org/10.5194/hess-17-1365-2013
Article
Google Scholar
Ruelland D, Hublart P, Tramblay Y (2015) Assessing uncertainties in climate change impacts on runoff in Western Mediterranean basins. In: Hydrologic non-stationarity and extrapolating models to predict the future, vol 371. IAHS Publ, pp 75–81. https://doi.org/10.5194/piahs-371-75-2015
Seibert J (2003) Reliability of model predictions outside calibration conditions. Nord Hydrol 34:477–492. https://doi.org/10.2166/nh.2003.028
Article
Google Scholar
Seiller G, Anctil F (2014) Climate change impacts on the hydrologic regime of a Canadian river: comparing uncertainties arising from climate natural variability and lumped hydrological model structures. Hydrol Earth Syst Sci 18:2033–2047. https://doi.org/10.5194/hess-18-2033-2014
Article
Google Scholar
Seiller G, Anctil F (2016) How do potential evapotranspiration formulas influence hydrological projections? Hydrol Sci J. https://doi.org/10.1080/02626667.2015.1100302
Sellami H, Benabdallah S, La Jeunesse I, Vanclooster M (2015) Quantifying hydrological responses of small Mediterranean catchments under climate change projections. Sci Total Environ 543:924–936. https://doi.org/10.1016/j.scitotenv.2015.07.006
CAS
Article
Google Scholar
Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. https://doi.org/10.1038/nature11575
CAS
Article
Google Scholar
Sperna Weiland FC, Tisseuil C, Dürr HH, Vrac M, Beek LPHV (2012) Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study. Hydrol Earth Syst Sci 2012(16):983–1000. https://doi.org/10.5194/hess-16-983-2012
Article
Google Scholar
Terink W, Immerzeel WW, Droogers P (2013) Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int J Climatol 33:3055–3072. https://doi.org/10.1002/joc.3650
Article
Google Scholar
Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456-457:11–29. https://doi.org/10.1016/j.jhydrol.2012.05.052
Article
Google Scholar
Tramblay Y, Ruelland D, Hanich L, Dakhlaoui H (2016) Hydrological impacts of climate change in north African countries. Sub-chapter 2.3.1, The Mediterranean region under climate change. A scientific update, IRD Éditions, 736 p
Tramblay Y, Jarlan L, Hanich L, Somot S (2017) Future scenarios of surface water resources availability in North African dams. Water Resour Manag 32:1291–1306. https://doi.org/10.1007/s11269-017-1870-8
Article
Google Scholar
Vormoor K, Heistermann M, Bronstert A, Lawrence D (2018) Hydrological model parameter (in)stability–“crash testing” the HBV model under contrasting flood seasonality conditions. HSJ 63:991–1007. https://doi.org/10.1080/02626667.2018.1466056
CAS
Article
Google Scholar
Wang T, Zhang J, Sun F, Liu W (2017) Pan evaporation paradox and evaporative demand from the past to the future over China: a review. WIREs Water 4:e1207. https://doi.org/10.1002/wat2.1207
Article
Google Scholar
Wilcox BP, Seyfried MS, Breshears DD, Stewart BA, Howell TA (2003) The water balance on rangelands. In: Encyclopedia of Water Science, vol 791–4. Marcel Dekker, New York
Google Scholar