Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48:317–337. https://doi.org/10.1623/hysj.48.3.317.45290
Article
Google Scholar
Alkemade R, van Oorschot M, Miles L, Nellemann C, Bakkenes M, Ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12:374–390
Article
Google Scholar
Audsley E, Pearn KR, Simota C, Cojocaru G, Koutsidou E, Rounsevell MDA, Trnka M, Alexandrov V (2006) What can scenario modelling tell us about future European scale agricultural land use, and what not? Environ Sci Pol 9:148–162. https://doi.org/10.1016/j.envsci.2005.11.008
Article
Google Scholar
Audsley E, Trnka M, Sabaté S, Maspons J, Sanchez A, Sandars D, Balek J, Pearn K (2015) Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation. Clim Chang 128:215–227. https://doi.org/10.1007/s10584-014-1164-6
Article
Google Scholar
Børgesen CD, Olesen JE (2011) A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark. Nat Hazards Earth Syst Sci 11:2541–2553. https://doi.org/10.5194/nhess-11-2541-2011
Article
Google Scholar
Carter TR (2013) Agricultural impacts: multi-model yield projections. Nat Clim Chang 3:784–786. https://doi.org/10.1038/nclimate1995
Article
Google Scholar
Dubrovsky M, Trnka M, Holman IP, Svobodova E, Harrison PA (2015) Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators. Clim Chang 128:169–186. https://doi.org/10.1007/s10584-014-1297-7
Article
Google Scholar
Eisner S (2016) Comprehensive evaluation of the WaterGAP3 model across climatic, physiographic, and anthropogenic gradients, Dissertation, KOBRA Dokumentenserver, University of Kassel, Germany, 140 p
Fronzek S, Carter TR, Räisänen J, Ruokolainen L, Luoto M (2010) Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia. Clim Chang 99:515–534. https://doi.org/10.1007/s10584-009-9679-y
Article
Google Scholar
Fronzek S, Carter TR, Luoto M (2011) Evaluating sources of uncertainty in modelling the impact of probabilistic climate change on sub-arctic palsa mires. Nat Hazards Earth Syst Sci 11:2981–2995. https://doi.org/10.5194/nhess-11-2981-2011
Article
Google Scholar
Fronzek S, Pirttioja N, Carter TR, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao F, Trnka M, Acutis M, Asseng S, Baranowski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Destain M-F, Dumont B, Ewert F, Ferrise R, François L, Gaiser T, Hlavinka P, Jacquemin I, Kersebaum KC, Kollas C, Krzyszczak J, Lorite IJ, Minet J, Minguez MI, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruane AC, Ruget F, Sanna M, Semenov MA, Slawinski C, Stratonovitch P, Supit I, Waha K, Wang E, Wu L, Zhao Z, Rötter RP (2018) Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agric Syst 159:209–224. https://doi.org/10.1016/j.agsy.2017.08.004
Article
Google Scholar
Grinsted A, Jevrejeva S, Riva R, Dahl-Jensen D (2015) Sea level rise projections for northern Europe under RCP8.5. Clim Res 64:15–23. https://doi.org/10.3354/cr01309
Article
Google Scholar
Harris GR, Collins M, Sexton DMH, Murphy JM, Booth BBB (2010) Probabilistic projections for 21st century European climate. Nat Hazards Earth Syst Sci 10:2009–2020. https://doi.org/10.5194/nhess-10-2009-2010
Article
Google Scholar
Harrison PA, Holman IP, Berry PM (2015) Assessing cross-sectoral climate change impacts, vulnerability and adaptation: an introduction to the CLIMSAVE project. Clim Chang 128:153–167. https://doi.org/10.1007/s10584-015-1324-3
Article
Google Scholar
Harrison PA, Dunford RW, Holman IP, Rounsevell MDA (2016) Climate change impact modelling needs to include cross-sectoral interactions. Nat Clim Chang 6:885–890. https://doi.org/10.1038/nclimate3039
Article
Google Scholar
Hasegawa T, Fujimori S, Shin Y, Takahashi K, Masui T, Tanaka A (2014) Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework. Environ Sci Technol 48:438–445. https://doi.org/10.1021/es4034149
Article
CAS
Google Scholar
Holmberg M, Futter MN, Kotamaki N, Fronzek S, Forsius M, Kiuru P, Pirttioja N, Rasmus K, Starr M, Vuorenmaa J (2014) Effects of changing climate on the hydrology of a boreal catchment and lake DOC–probabilistic assessment of a dynamic model chain. Boreal Environ Res 19:66–83
CAS
Google Scholar
Honda Y, Kondo M, McGregor G, Kim H, Guo Y-L, Hijioka Y, Yoshikawa M, Oka K, Takano S, Hales S, Kovats RS (2014) Heat-related mortality risk model for climate change impact projection. Environ Health Prev Med 19:56–63. https://doi.org/10.1007/s12199-013-0354-6
Article
Google Scholar
Huber N, Bugmann H, Lafond V (2018) Global sensitivity analysis of a dynamic vegetation model: model sensitivity depends on successional time, climate and competitive interactions. Ecol Model 368:377–390. https://doi.org/10.1016/j.ecolmodel.2017.12.013
Article
Google Scholar
Ito A, Inatomi M (2012) Water-use efficiency of the terrestrial biosphere: a model analysis focusing on interactions between the global carbon and water cycles. J Hydrometeorol 13:681–694. https://doi.org/10.1175/JHM-D-10-05034.1
Article
Google Scholar
Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. Climate change 2014: impacts, adaptation, and vulnerability Part B: Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
Lindner M, Lasch P, Badeck F-W, Beguiristain PP, Junge S, Kellomäki S, Peltola H, Gracia C, Sabate S, Jäger D Lexer M, Freeman M (2005) SilviStrat model evaluation exercises. In: Kellomäki S, Leinonen S (eds) Management of European forests under changing climatic conditions. Research notes 163. University of Joensuu, Faculty of Forestry, Joensuu, pp 117–157
Linham MM, Green CH, Nicholls RJ (2010) Costs of adaptation to the effects of climate change in the world’s large port cities. Avoiding dangerous climate change report AV/WS1/D1/02. Department of Energy and Climate Change (DECC) and Department for Environment Food and Rural Affairs (DEFRA, London
Google Scholar
Martre P, Wallach D, Asseng S, Ewert F, Jones JW, Rötter RP, Boote KJ, Ruane AC, Thorburn PJ, Cammarano D, Hatfield JL, Rosenzweig C, Aggarwal PK, Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson N, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant RF, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Muller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stockle CO, Stratonovitch P, Streck T, Supit I, Tao FL, Travasso M, Waha K, White JW, Wolf J (2015) Multimodel ensembles of wheat growth: many models are better than one. Glob Chang Biol 21:911–925
Article
Google Scholar
Masutomi Y, Takahashi K, Harasawa H, Matsuoka Y (2009) Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agric Ecosyst Environ 131:281–291. https://doi.org/10.1016/j.agee.2009.02.004
Article
Google Scholar
Mina M, Bugmann H, Cordonnier T, Irauschek F, Klopcic M, Pardos M, Cailleret M (2017) Future ecosystem services from European mountain forests under climate change. J Appl Ecol 54:389–401. https://doi.org/10.1111/1365-2664.12772
Article
Google Scholar
Mokrech M, Kebede AS, Nicholls RJ, Wimmer F, Feyen L (2015) An integrated approach for assessing flood impacts due to future climate and socio-economic conditions and the scope of adaptation in Europe. Clim Chang 128:245–260. https://doi.org/10.1007/s10584-014-1298-6
Article
Google Scholar
Olesen J, Carter T, Díaz-Ambrona C, Fronzek S, Heidmann T, Hickler T, Holt T, Minguez M, Morales P, Palutikof J, Quemada M, Ruiz-Ramos M, Rubæk G, Sau F, Smith B, Sykes M (2007) Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim Chang 81(Supplement 1):123–143
Article
Google Scholar
Parry M, Carter T (1998) Climate impact and adaptation assessment - a guide to the IPCC approach. Earthscan Publications Ltd, London
Google Scholar
Pirttioja N, Carter T, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao F, Trnka M, Acutis M, Asseng S, Baranowski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Destain M, Dumont B, Ewert F, Ferrise R, François L, Gaiser T, Hlavinka P, Jacquemin I, Kersebaum K, Kollas C, Krzyszczak J, Lorite I, Minet J, Minguez M, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruane A, Ruget F, Sanna M, Semenov M, Slawinski C, Stratonovitch P, Supit I, Waha K, Wang E, Wu L, Zhao Z, Rötter R (2015) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim Res 65:87–105. https://doi.org/10.3354/cr01322
Article
Google Scholar
Pirttioja N, Palosuo T, Fronzek S, Räisänen J, Rötter R, Carter TR (2018) Using impact response surfaces to analyse the likelihood of impacts on crop yield under probabilistic climate change, in review
Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F, Stehfest E, Bodirsky BL, Dietrich JP, Doelmann JC, Gusti M, Hasegawa T, Kyle P, Obersteiner M, Tabeau A, Takahashi K, Valin H, Waldhoff S, Weindl I, Wise M, Kriegler E, Lotze-Campen H, Fricko O, Riahi K, van Vuuren DP (2017) Land-use futures in the shared socio-economic pathways. Glob Environ Chang 42:331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002
Prudhomme C, Wilby RL, Crooks S, Kay AL, Reynard NS (2010) Scenario-neutral approach to climate change impact studies: application to flood risk. J Hydrol 390:198–209. https://doi.org/10.1016/j.jhydrol.2010.06.043
Article
Google Scholar
Remesan R, Holman IP (2015) Effect of baseline meteorological data selection on hydrological modelling of climate change scenarios. J Hydrol 528:631–642. https://doi.org/10.1016/j.jhydrol.2015.06.026
Article
Google Scholar
Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, Kc S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
Article
Google Scholar
Ruiz-Ramos M, Ferrise R, Rodríguez A, Lorite I, Bindi M, Carter TR, Fronzek S, Palosuo T, Pirttioja N, Baranowski P, Buis S, Cammarano D, Chen Y, Dumont B, Ewert F, Gaiser T, Hlavinka P, Hoffmann H, Höhn JG, Jurecka F, Kersebaum KC, Krzyszczak J, Lana M, Mechiche-Alami A, Minet J, Montesino M, Nendel C, Porter JR, Ruget F, Semenov M, Steinmetz Z, Stratonovitch P, Supit I, Tao F, Trnka M, de Wit A, Rötter RP (2018) Adaptation response surfaces for local management of wheat under perturbed climate and CO2 concentration in a Mediterranean environment. Agric Syst 159:260–274. https://doi.org/10.1016/j.agsy.2017.01.009
Article
Google Scholar
Stehfest E, van Vuuren D, Kram T, Bouwman L, Alkemade R, Bakkenes M, Bouwman A, den Elzen M, Janse J, Lucas P, van Minnen J, Müller C, Prins AG (2014) Integrated assessment of global environmental change with IMAGE 3.0: Model description and policy applications. Netherlands Environmental Assessment Agency (PBL), p 735
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Article
Google Scholar
Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl 22:2065–2077. https://doi.org/10.1890/12-0210.1
Article
Google Scholar
Tinner W, Ballian D, Beck P, Birks H, Eaton E (2016) European atlas of forest tree species. Publication Office of the European Union, p 200 https://doi.org/10.2788/4251
Van Minnen JG, Alcamo J, Haupt W (2000) Deriving and applying response surface diagrams for evaluating climate change impacts on crop production. Clim Chang 46:317–338. https://doi.org/10.1023/A:1005651327499
Article
Google Scholar
van Oldenborgh GJ, Collins M, Arblaster J, Christensen JH, Marozke J, Power S, Rummukainen M, Zhou T (2013) Annex I: Atlas of global and regional climate projections. In: Stocker, TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.029
van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. https://doi.org/10.1007/s10584-011-0148-z
Article
Google Scholar
Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc Natl Acad Sci 111:3228–3232. https://doi.org/10.1073/pnas.1312330110
Article
CAS
Google Scholar
Weiß M, Alcamo J (2011) A systematic approach to assessing the sensitivity and vulnerability of water availability to climate change in Europe. Water Resour Res 47:W02549. https://doi.org/10.1029/2009WR008516
Article
Google Scholar