Skip to main content

Advertisement

Log in

What drives the water quality changes in the Selenga Basin: climate change or socio-economic development?

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Lake Baikal is the largest near-surface global freshwater source and of high interest for water quality alterations, as deterioration of water quality is a main global and an increasing issue in the Selenga River Basin. Here, the Selenga River Basin as main contributor to the inflow of Lake Baikal is extremely important. Pressure on ecosystems and water resources increased due to population growth, rapid urbanization and rising industrial activities, particularly in the mining sector. In this study, the large-scale water resources model WaterGAP3 is applied to calculate loadings of conservative substances (total dissolved solids) and non-conservative substances (faecal coliform bacteria and biological oxygen demand) in a spatially explicit way as well as in in-stream concentrations to get an insight into the state of water quality under current and future scenario conditions. The results show a strong increase in loadings in the scenario period and consequently increasing concentration levels. Comparing the sectoral contributions of the loadings, domestic and industrial sectors are by far the main contributors today and expected to be in the future. Furthermore, for all modelled substances and time periods, water quality thresholds are exceeded posing a potential risk to aquatic ecosystems and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altansukh O (2008) Surface water quality assessment and modelling: a case study in the Tuul River, Ulaanbaatar City, Mongolia. Master thesis, University of Twente, The Netherlands, p 105

  • Aus der Beek T, Flörke M, Lapola DM, Schaldach R, Voß F, Teichert E (2010) Modelling historical and current irrigation water demand on the continental scale: Europe. Adv Geosci 27:79–85. doi:10.5194/adgeo-27-79-2010

    Article  Google Scholar 

  • Batimaa P (2006) Climate change vulnerability and adaptation in the livestock sector of Mongolia. A final report submitted to assessments of impacts and adaptations to climate change (AIACC), Project no. AS 06, Washington. https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiomc2ykc3KAhXF-A4KHezjAVsQFggkMAA&url=http%3A%2F%2Fstart.org%2Fdownload%2Fpublications%2FAIACCfullreport.pdf&usg=AFQjCNHrR2baEl2rfNjt9vWckXTDtbngGQ. Accessed 11 Jan 2016

  • Batimaa P, Natsagdorj L, Gombluudev P, Erdenetsetseg B (2005) Observed climate change in Mongolia. AIACC Working paper no. 12. http://www.start.org/Projects/AIACC_Project/working_papers/Working%20Papers/AIACC_WP_No001.pdf Accessed 15 Jan 2016

  • Batsukh N, Dorjsuren D, Batsaikhan G (2008) The water resources, use and conservation in Mongolia. First National Report, Ulaanbaatar

    Google Scholar 

  • Bolormaa O, Baasansuren J, Kawasaki K, Watanabe M, Hattori T (2006) PIXE analysis of heavy metals in water samples from a mining area in Mongolia. Nucl Instrum Methods Phys Res Sect B Beam Interac Mater Atoms 243(1):161–166. doi:10.1016/j.nimb.2005.07.190

    Article  CAS  Google Scholar 

  • Britz TJ, Sigge GO, Huisamen N, Kikine T, Ackermann A, Lötter M, Lamprecht C, Kidd M (2013) Fluctuations of indicator and index microbes as indication of pollution over 3 years in the Plankenburg and Eerste Rivers, Western Cape, South Africa. Water SA 39(4):357–366. doi:10.4314/wsa.v39i4.3

    Google Scholar 

  • Byambaa B, Todo Y (2011) Technological impact of placer gold mine on water quality: case of Tuul river valley in the Zaamar Goldfield, Mongolia. World Acad Sci Eng Technol 75:167–175

    Google Scholar 

  • Chalov SR, Jarsjö J, Kasimov N, Romanchenko A, Pietron J, Thorslund J, Belozerova E (2015) Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environ Earth Sci 72(2):663–680. doi:10.1007/s12665-014-3106-z

    Article  Google Scholar 

  • Döll P, Fiedler K, Zhang J (2009) Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci 13:2413–2432

    Article  Google Scholar 

  • Dunlop J, McGregor G, Horrigan N (2005) Potential impacts of salinity and turbidity in riverine ecosystems. Characterisation of impacts and a discussion of regional target setting for riverine ecosystems in Queensland. The State of Queensland, Australia. https://www.ehp.qld.gov.au/water/pdf/potential-impacts-sal-tur.pdf Accessed 15 June 2015

  • DWA Department of Water Affairs and Forestry (1996) South African water quality guidelines, Vol 1. Domestic use. Pretoria, South Africa, p 190. https://www.dwa.gov.za/iwqs/wq_guide/Pol_saWQguideFRESH_vol1_Domesticuse.PDF. Accessed 16 Jan 2016

  • El Bouraie MM, Motawea EA, Mohamed GG, Yehia MM (2011) Water quality of Rosetta branch in Nile delta, Egypt. Suoseura 62(1):31–37

    Google Scholar 

  • FAO Food and Agricultural Organization of the United Nations (1985) Water quality for agriculture. FAO Irrigation and drainage paper 29 Rev. 1, Rome. http://www.fao.org/DOCReP/003/T0234e/T0234e00.htm. Accessed 16 June 2015

  • FAO Food and Agricultural Organization of the United Nations (2012) Irrigation in Southern and Eastern Asia in figures. AQUASTAT Survey—2011. FAO Water Reports 37, Rome. http://www.fao.org/docrep/016/i2809e/i2809e.pdf. Accessed 10 June 2015

  • Farrington JD (2005) The impact of mining activities on Mongolia’s protected areas: a status report with policy recommendations. Integr Environ Assess Manag 1:283–289. doi:10.1897/2004-008R.1

    Article  Google Scholar 

  • Flörke M, Kynast E, Bärlund I (2012) Will climate change affect the electricity production sector? A European study. J Water Clim Change 3(1):44–54. doi:10.2166/wcc.2012.066

    Article  Google Scholar 

  • Flörke M, Kynast E, Bärlund I, Eisner S, Wimmer F, Alcamo J (2013) Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob Environ Change 23:144–156. doi:10.1016/j.gloenvcha.2012.10.018

    Article  Google Scholar 

  • Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:221–233. doi:10.5194/tc-6-221-2012

    Article  Google Scholar 

  • Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J Hydrometeorol 12:556–578. doi:10.1175/2011JHM1336.1

    Article  Google Scholar 

  • Hampton S, Izmest’eva LR, Moore MV, Katz SL, Dennis B, Silow EA (2008) Sixty years of environmental change in the world’s largest freshwater lake—lake Baikal, Siberia. Glob Change Biol 14:1–12. doi:10.1111/j.1365-2486.2008.01616.x

    Article  Google Scholar 

  • Hofmann J, Venohr M, Behrendt H, Opitz D (2010) Integrated water resources management in Central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Sci Technol 62(2):353–363. doi:10.2166/wst.2010.262

    Article  CAS  Google Scholar 

  • Hofmann J, Hurdler J, Ibisch R, Schaeffer M, Borchardt D (2011) Analysis of recent nutrient emission pathways, resulting surface water quality and ecological impacts under extreme continental climate: the Kharaa River Basin (Mongolia). Int Rev Hydrobiol 96(5):484–519. doi:10.1002/iroh.201111294

    Article  CAS  Google Scholar 

  • Hofmann J, Rode M, Theuring P (2013) Recent developments in river water quality in a typical Mongolian river basin, the Kharaa case study understanding freshwater quality problems in a changing world. In: Proceedings of H04, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013 (IAHS Publ. 361)

  • Hofmann J, Watson V, Scharaw B (2015) Groundwater quality under stress: contaminants in the Kharaa River Basin (Mongolia). Environ Earth Sci 73(2):629–648. doi:10.1007/s12665-014-3148-2

    Article  CAS  Google Scholar 

  • Inam E, Khantotong S, Kim KW, Tumendemberel B, Erdenetsetseg S, Puntsag T (2011) Geochemical distribution of trace element concentrations in the vicinity of the Boroo gold mine, Selenge Province, Mongolia. Environ Geochem Health 33:57–69. doi:10.1007/s10653-010-9347-1

    Article  CAS  Google Scholar 

  • Kaus A, Schäffer M, Karthe D, Büttner O, von Tümpling W, Borchardt D (this issue) Regional patterns of heavy metal contamination in river water, sediment and locally consumed fish species of the Kharaa River basin, Mongolia. Reg Environ Change

  • Karthe D, Malsy M, Kopp B, Minderlein S, Hülsmann L (2013) Assessing water availability and drivers in the context of an integrated water resources management (IWRM): a case study from the Kharaa River Basin, Mongolia. Geo-Öko 34(1–2):5–26

    Google Scholar 

  • Karthe D, Hofmann J, Ibisch R, Heldt S, Westphal K, Menzel L, Avlyush S, Malsy M (2015) Science-based IWRM implementation in a data-scarce Central Asian region: experiences from a research and development project in the Kharaa River Basin, Mongolia. Water 7(7):3486–3514. doi:10.3390/w7073486

    Article  Google Scholar 

  • KEI Korea Environment Institute (2006) Joint research between Korea and Mongolia on water quality and contamination of transboundary watershed in Northern Mongolia. Seoul, Korea

    Google Scholar 

  • Kelderman P, Batima P (2006) Water quality assessment of rivers in Mongolia. Water Sci Technol 53(10):111–119. doi:10.2166/wst.2006.304

    Article  CAS  Google Scholar 

  • Kopp B, Menzel L, Minderlein S (2014) Soil moisture dynamics in a mountainous headwater area in the discontinuous permafrost zone of northern Mongolia. Arct Antarct Alp Res 46(2):459–470. doi:10.1657/1938-4246-46.2.459

    Article  Google Scholar 

  • Krätz DA, Ibisch RB, Avylush S, Enkhbayar G, Nergui S, Borchardt D (2010) Impacts of open placer gold mining on aquatic communities in rivers of the Khentii Mountains, North-East Mongolia. Mong J Biol Sci 8(1):41–50

    Article  Google Scholar 

  • Lehner B, Verdin K, Jaarvis A (2008) New global hydrography derived from spaceborne elevation data. EOS Trans Am Geophys Union 89(10):93–94. doi:10.1029/2008EO100001

    Article  Google Scholar 

  • Malsy M, aus der Beek T, Eisner S, Flörke M (2012) Climate change impacts on Central Asian water resources. Adv Geosci 32:77–83. doi:10.5194/adgeo-32-77-2012

    Article  Google Scholar 

  • Malsy M, Heinen M, aus der Beek T, Flörke M (2013) Water resources and socio-economic development in a water scarce region on the example of Mongolia. Geo-Öko 34(1–2):27–49

    Google Scholar 

  • Malsy M, aus der Beek T, Flörke M (2015) Evaluation of large-scale precipitation data sets for water resources modelling in Central Asia. Environ Earth Sci 73(2):787–799. doi:10.1007/s12665-014-3107-y)

    Article  CAS  Google Scholar 

  • MEGD Ministry of Environment and Green Development (2012) Integrated water management national assessment report, vol II. Ulaanbaatar, Mongolia

    Google Scholar 

  • Ministry of Energy (2014) Terms of reference for environmental and social impact assessment of ‘Shuren Hydropower Plant’ project. Ulaanbaatar. http://www.minis.mn/file/files/Shuren_TOR_for_EIA_EN_2014.12_.08_.pdf. Accessed 17 June 2015

  • Ministry of the Environment (2012) Conama resolutions, Brasilia, Brazil, p 916. http://www.mma.gov.br/port/conama/processos/61AA3835/CONAMA-ingles.pdf. Accessed 08 June 2015

  • MoMo-Consortium (2009) MoMo—IWRM in Central Asia—Model Region Mongolia (MoMo): case study in the Kharaa River Basin. Final Project Report

  • Mongolian Statistical Information Service (2015) GROSS DOMESTIC PRODUCT, by divisions. http://www.1212.mn. Accessed 12 June 2015

  • Müller Schmied H, Eisner S, Franz D, Wattenbach M, Portmann FT, Flörke M, Döll P (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Syst Sci 18:3511–3538. doi:10.5194/hess-18-3511-2014

    Article  Google Scholar 

  • PCD Pollution Control Department (2004) Water quality standards. Ministry of Natural Resources and Environment, Thailand. http://www.pcd.go.th/info_serv/en_reg_std_water.html. Accessed 02 June 2015

  • Nadmitov B, Hong S, In Kang S, Chu JM, Gomboev B, Janchivdorj L, Lee C-H, Khim JS (2015) Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River Basin (2007–2009). Environ Sci Pollut Res 22:2856–2867. doi:10.1007/s11356-014-3564-6

    Article  CAS  Google Scholar 

  • Piani C, Weedon GP, Best M, Gomes SM, Viterbo P, Hagemann S, Haerter JO (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215. doi:10.1016/j.jhydrol.2010.10.024

    Article  Google Scholar 

  • Pierson SM, Rosenbaum BJ, McKay LD, Dewald TG (2008) Strahler stream order and Strahler calculator values in NHDPlus. SOSC technical paper, September 30, 2008. ftp.horizon-systems.com/NHDPlus/NHDPlusV21/Documentation/TechnicalDocs/SOSC_technical_paper.pdf. Accessed 13 Jan 2016

  • Priess JA, Schweitzer C, Wimmer F, Batkhishig O, Mimmler M (2011) The consequences of land-use change and water demands in Central Mongolia—an assessment based on regional land-use policies. Land Use Policy 28(1):4–10. doi:10.1016/j.landusepol.2010.03.002

    Article  Google Scholar 

  • Priess JA, Schweitzer C, Batkhishig O, Koschitzki T, Wurbs D (2015) Impacts of agricultural land-use dynamics on erosion risks and options for land and water management in Northern Mongolia. Environ Earth Sci 73(2):697–708. doi:10.1007/s12665-014-3380-9

    Article  Google Scholar 

  • Reder K, Flörke M, Alcamo J (2015) Modeling historical fecal coliform loadings to large European rivers and resulting in-stream concentrations. Environ Model Softw 63:251–263. doi:10.1016/j.envsoft.2014.10.001

    Article  Google Scholar 

  • Schneider C, Flörke M, Eisner S, Voss F (2011) Large scale modelling of bankfull flow: an example for Europe. J Hydrol 408:235–245. doi:10.1016/j.jhydrol.2011.08.004

    Article  Google Scholar 

  • Sorokovikova LM, Popovskaya GI, Tomberg IV, Sinyukovich VN, Kravchenko OS, Marinaite II, Bashenkhaeva NV, Khodzher TV (2013) The Selenga River water quality on the border with Mongolia at the beginning of the twenty-first Century. Russ Meteorol Hydrol 38(2):126–133. doi:10.3103/S1068373913020106

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38(6):913–920. doi:10.1029/TR038i006p00913

    Article  Google Scholar 

  • Stubblefield A, Chandra S, Eagan S, Tuvshinjargal D, Davaadorzh G, Gilroy D, Sampson J, Thorne J, Allen B, Zeb Hogan (2005) Impacts of gold mining and land use alterations on the water quality of central Mongolian rivers. Integr Environ Assess Manag 1(4):365–373. doi:10.1897/1551-3793(2005)1

    Article  CAS  Google Scholar 

  • Thorslund J, Jarsjö J, Chalov S, Belozerova EV (2012) Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. J Environ Monit 14:2780–2792. doi:10.1039/C2EM30643C

    Article  CAS  Google Scholar 

  • Törnqvist R, Jarsjö J, Pietron J, Bring A, Rogberg P, Asokan SM (2014) Evolution of the hydro-climate system in the Lake Baikal Basin. J Hydrol 519:1953–1962. doi:10.1016/j.jhydrol.2014.09.074

    Article  Google Scholar 

  • Törnros T, Menzel L (2010) Heading for knowledge in a data scarce river basin: Kharaa, Mongolia. In: Herrman A, Schumann S (eds) Status and perspectives of hydrology in Small Basins (Proceedings of the Workshop held at Goslar-Hahnenklee, Germany, 30 March- 2 April 2009). IAHS Publ. 336:270–275

  • UNESCO United Nations Educational, Scientific and Cultural Organization (2013) Water quality of the Kharaa River Basin, Mongolia: Pollution threats and hotspots assessment. Ulaanbaatar, p 76. http://unesdoc.unesco.org/images/0023/002312/231293e.pdf. Accessed 16 Jan 2016

  • Vassolo S, Döll P (2005) Global-scale gridded estimates of thermoelectric power and manufacturing water use. Water Resour Res 41(4):W04010. doi:10.1029/2004WR003360

    Article  Google Scholar 

  • Verzano K (2009) Climate change impacts on flood related hydrological processes: further development and application of a global scale hydrological model, reports on earth system science, 71-2009, dissertation, Max Planck Institute for Meteorology, Hamburg, Germany, p 166. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/WEB_BzE_71_verzano.pdf. Accessed 28 Jan 2016

  • Voß A, Alcamo J, Bärlund I, Voß F, Kynast E, Williams R, Malve O (2012) Continental scale modelling of in-stream river water quality: a report on methodology, test runs, and scenario application. Hydrol Process 26(16):2370–2384. doi:10.1002/hyp.9445

    Article  Google Scholar 

  • Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol 12:823–848. doi:10.1175/2011JHM1369.1

    Article  Google Scholar 

  • WHO World Health Organization (2000) Monitoring bathing waters—a practical guide to the design and implementation of assessments and monitoring programmes. London, New York. http://www.who.int/water_sanitation_health/bathing/monbathwat.pdf. Accessed 14 Jan 2016

  • Williams R, Keller V, Voß A, Bärlund I, Malve O, Riihimäki J, Tattari S, Alcamo J (2012) Assessment of current water pollution loads in Europe: estimation of gridded loads for use in global water quality models. Hydrol Process 26(16):2395–2410. doi:10.1002/hyp.9427

    Article  CAS  Google Scholar 

  • Withanachchi SS, Houdret A, Nergui S, Gonzalez EE, Tsogtbayar A, Ploeger A (2014) (Re)configuration of water resources management in Mongolia: a critical geopolitical analysis. The International Center for Development and Decent Work, ICDD Working Papers 13, Kassel, Germany. https://www.die-gdi.de/uploads/media/IWRM_Mongolia_2014.pdf Accessed 20 Nov 2015

Download references

Acknowledgments

The authors gratefully acknowledge the IWRM-MoMo project and Boldbaatar Sosorburam for the provision of data for model calibration; Kristina Gruber & Alejandra Matovelle for additional data acquisition and processing; Sergey Chalov for the provision of current mining and exploration sites; Klara Reder for the support and data concerning FC modelling. This paper is part of the work conducted within the United Nations Environment Programme report “The world’s water quality: A pre-study for a worldwide assessment”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Malsy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malsy, M., Flörke, M. & Borchardt, D. What drives the water quality changes in the Selenga Basin: climate change or socio-economic development?. Reg Environ Change 17, 1977–1989 (2017). https://doi.org/10.1007/s10113-016-1005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1005-4

Keywords

Navigation