Skip to main content

Advertisement

Log in

Long-Term Water Quality Modeling of a Shallow Eutrophic Lagoon with Limited Forcing Data

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Water quality modeling can be an important tool for lake management. However, if the simulation period is small and the forcing data is limited, the result uncertainty may diminish its usefulness. This study was conceived with the aim of implementing a long-term water quality simulation of a shallow eutrophic lagoon, with limited forcing data, to evaluate result uncertainty and the advantages of such an approach for the water management process. The lagoon water quality was simulated, over a period of 19 years (2000 to 2019), with the CE-QUAL-W2 model, and the watershed with the SWAT model. Two different scenarios regarding the lagoon inflow water quality characterization were considered and evaluated. The CE-QUAL-W2 model was used to simulate the lagoon water column and sediment biogeochemical fluxes using the following seventeen constituents as a calibration reference: water temperature; dissolved oxygen; orthophosphates; total phosphorus; ammonia; nitrate plus nitrite; total nitrogen; carbonaceous biochemical oxygen demand; total dissolved solids; pH; six algae biomass groups, and chlorophyll-a. The results show that despite the high level of uncertainty in the lagoon’s daily constituents’ variation, the long-term perspective on the biogeochemical fluxes, as described by the interannual constituent’s evolution, enabled the identification of ecological thresholds, the convergence and divergence of the system, and constituent trajectories. These results can represent a step forward into the establishment of cause-and-effect relationships between pressures and water body status, thus allowing an effectiveness improvement on the integrated water resource planning and management under the European Water Framework Directive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Reynaud, A., & Lanzanova, D. (2017). A global meta-analysis of the value of ecosystem services provided by lakes. Ecological Economics, 137, 184–194. https://doi.org/10.1016/j.ecolecon.2017.03.001

    Article  Google Scholar 

  2. Zhang, K., Yang, X., Kattel, G., Lin, Q., & Shen, J. (2018). Freshwater lake ecosystem shift caused by social-economic transitions in Yangtze River Basin over the past century. Science and Reports, 8, 17146. https://doi.org/10.1038/s41598-018-35482-5

    Article  CAS  Google Scholar 

  3. Adrian, R. Hessen, D. O., Blenckner, T., Hillebrand, H., Hilt S., Jeppesen, E., Livingsonte, D. M., & Trolle, D. (2016). Environmental impacts - Lake ecosystems. In: Quante M., Colijn F. (eds) North Sea Region Climate Change Assessment. Regional Climate Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-39745-0_10

  4. Kristensen, P., Whalley, C., Zal, F. N. N., & Christiansen, T. (2018). European waters: Assessment of status and pressures. https://doi.org/10.2800/303664

    Article  Google Scholar 

  5. O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027

    Article  CAS  Google Scholar 

  6. Pick, F. R. (2016). Blooming algae: A Canadian perspective on the rise of toxic cyanobacteria. The Canadian Journal of Fisheries and Aquatic Sciences, 73, 1–10. https://doi.org/10.1139/cjfas-2015-0470

    Article  CAS  Google Scholar 

  7. Cooney, E. M., McKinney, P., Sterner, R. W., Small, G. E., & Minor, E. C. (2018). Tale of two storms: Impact of extreme rain events on the biogeochemistry of Lake Superior. Journal of Geophysical Research. Biogeosciences, 123, 1719–1731. https://doi.org/10.1029/2017JG004216

    Article  CAS  Google Scholar 

  8. Bennion, H. Simpson, G. L., & Goldsmith, B. J. (2015). Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record. Frontiers in Ecology and Evolution, 3(94).

  9. McCrackin, M. L., Jones, H. P., Jones, P. C., & Moreno-Mateos, D. (2017). Recovery of lakes and coastal marine ecosystems from eutrophication: A global meta-analysis. Limnology and Oceanography, 62(2), 507–518.

    Article  Google Scholar 

  10. Ganju, N. K., Brush, M. J., Rashleigh, B., Aretxabaleta, A. L., del Barrio, P., Grear, J. S., et al. (2016). Progress and challenges in coupled hydrodynamic-ecological estuarine modeling. Estuaries and Coasts, 39, 311–332. https://doi.org/10.1007/s12237-015-0011-y

    Article  Google Scholar 

  11. Hanson, P. C., Stillman, A. B., Jia, X., Karpatne, A., Dugan, H. A., Carey, C. C., Stachelek, J., Ward, N. K., Zhang, Y., Read, J. S., & Kumar, V. (2020). Predicting lake surface water phosphorus dynamics using process-guided machine learning. Ecological Modelling, 430, 109136. https://doi.org/10.1016/j.ecolmodel.2020.109136

    Article  CAS  Google Scholar 

  12. Almeida, M. C., Shevchuk, Y., Kirillin, G., Soares, P. M. M., Cardoso, R. M., Matos, J. P., et al. (2022). Modeling reservoir surface temperatures for regional and global climate models: A multi-model study on the inflow and level variation effects. Geoscientific Model Development, 15, 173–197. https://doi.org/10.5194/gmd-15-173-2022

    Article  Google Scholar 

  13. Soares, L. M. V., Calijuri, M., & do C. (2021). Deterministic modelling of freshwater lakes and reservoirs: Current trends and recent progress. Environmental Modelling & Software, 144, 105143. https://doi.org/10.1016/j.envsoft.2021.105143

    Article  Google Scholar 

  14. Ejigu, M. T. (2021). Overview of water quality modeling. Cogent Engineering, 8(1), 1891711. https://doi.org/10.1080/23311916.2021.1891711

    Article  Google Scholar 

  15. Vincon-Leite, B., & Casenave, C. (2019). Modeling eutrophication in lake ecosystems: A review. Science of the Total Environment, 651, 2985–3001.

    Article  CAS  Google Scholar 

  16. Huang, J., Gao, J., & Hoermann, G. (2012). Hydrodynamic-phytoplankton model for shortterm forecasts of phytoplankton in Lake Taihu, China. Limnology, 42, 7–18. https://doi.org/10.1016/j.limno.2011.06.003

    Article  CAS  Google Scholar 

  17. Recknagel, F., Adrian, R., Koehler, J., & Cao, H. (2016). Threshold quantification and short-term forecasting of Anabaena, Aphanizomenon and Microcystis in the polymictic eutrophic Lake Muggelsee (Germany) by inferential modeling using the hybrid evolutionary algorithm HEA. Hydrobiology, 778, 61–74. https://doi.org/10.1007/s10750-015-2442-7

    Article  CAS  Google Scholar 

  18. Li, W., Qin, B., & Zhu, G. (2014). Forecasting short-term cyanobacterial blooms in Lake Taihu, China, using a coupled hydrodynamic–algal biomass model. Ecohydrology, 7, 794–802. https://doi.org/10.1002/eco.1402

    Article  CAS  Google Scholar 

  19. Chapra, S. C., & Canale, R. P. (1991). Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Water Research, 25, 707–715. https://doi.org/10.1016/0043-1354(91)90046-S

    Article  CAS  Google Scholar 

  20. Pipp, E., & Rott, E. (1995). The phytoplankton compartment model is a small meromictic lake with special reference to species-specific niches and long-term changes. Ecology Model, 78, 129–148. https://doi.org/10.1016/0304-3800(94)00123-Y

    Article  Google Scholar 

  21. Howard, A., & Easthope, M. (2002). Application of a model to predict cyanobacterial growth patterns in response to climatic change at Farmoor Reservoir, Oxfordshire, UK. Science of the Total Environment, 282, 459–469. https://doi.org/10.1016/S0048-9697(01)00929-9

    Article  Google Scholar 

  22. Markensten, H., Moore, K., & Persson, I. (2010). Simulated lake phytoplankton composition shifts toward cyanobacteria dominance in a future warmer climate. Ecological Applications, 20, 752–767. https://doi.org/10.1890/08-2109.1

    Article  Google Scholar 

  23. Hosseini, N., Akomeah, E., Davis, J. M., & Lindenschmidt, K.-E. (2018). Water quality modeling of a prairie river-lake system. Environmental Science and Pollution Research, 25, 31190–31204. https://doi.org/10.1007/s11356-018-3055-2

    Article  CAS  Google Scholar 

  24. Ozkundakci, D., Hamilton, D. P., & Trolle, D. (2011). Modeling the response of a highly eutrophic lake to reductions in external and internal nutrient loading. New Zealand Journal of Marine and Freshwater Research, 45, 165–185. https://doi.org/10.1080/00288330.2010.548072

    Article  CAS  Google Scholar 

  25. Lindim, C., Becker, A., Grueneberg, B., & Fischer, H. (2015). Modeling the effects of nutrient loads reduction and testing of the N and P control paradigm in a German shallow lake. Ecological Engineering, 82, 415–427. https://doi.org/10.1016/j.ecoleng.205.05.009

    Article  Google Scholar 

  26. Wang, Y., Hu, W., Peng, Z., Zeng, Y., & Rinke, K. (2018). Predicting Lake eutrophication responses to multiple scenarios of lake restoration: A three-dimensional modeling approach. Water, 2018(10), 994. https://doi.org/10.3390/w10080994

    Article  CAS  Google Scholar 

  27. Sagehashi, M., Sakoda, A., & Suzuki, M. (2001). Mathematical model of a shallow and eutrophic lake (the Keszthely Basin, Lake Balaton) and simulation of restorative manipulations. Water Research, 35, 1675–1686. https://doi.org/10.1016/S0043-1354(00)00435-8

    Article  CAS  Google Scholar 

  28. Moore, B. C., Chen, P.-H., Funk, W. H., & Yonge, D. (1996). A model for predicting lake sediment oxygen demand following hypolimnetic aeration. Journal of the American Water Resources Association, 32, 723–731. https://doi.org/10.1111/j.1752-1688.1996.tb03469.x

    Article  CAS  Google Scholar 

  29. Sahoo, G. B., & Luketina, D. (2003). Modeling of bubble plume design and oxygen transfer for reservoir restoration. Water Research, 37, 393–401. https://doi.org/10.1016/S0043-1354(02)00283-X

    Article  CAS  Google Scholar 

  30. Singleton, V. L., Rueda, F. J., & Little, J. C. (2010). The coupled bubble plume–reservoir model for hypolimnetic oxygenation. Water Resources Research. https://doi.org/10.1029/2009WR009012

    Article  Google Scholar 

  31. Toffolon, M., & Serafini, M. (2013). Effects of artificial hypolimnetic oxygenation in a shallow lake. Part 2: Numerical modelling. Journal of Environmental Management Article, 114, 530–539. https://doi.org/10.1016/j.jenvman.2012.10.063

    Article  CAS  Google Scholar 

  32. Rangel-Peraza, J. G., De Anda, J., González-Farías, F., & Rode, M. (2016). Sensitivity and uncertainty analysis on water quality modeling of Aguamilpa reservoir. Journal of Limnology, 75(1), 81–92. https://doi.org/10.4081/jlimnol.2016.1391

    Article  Google Scholar 

  33. Santos, M. C. R., Pacheco, D. M. Santana, F. J. P., & Rodrigues, A. M. F. (2005). The Eutrophication of Lagoas das Sete-Cidades and Furnas (S. Miguel – Azores). Evolutionary analysis between 1988 and 2002. Water Technology, Issue I, May, 54–65.

  34. Gonçalves, V. (1998). Seasonal succession of phytoplankton in Furnas lagoon. Vidalia, 11.

  35. Bio, A., Couto, A., Costa, R., Prestes, A., Vieira, N., Valente, A., & Azevedo, J. (2008). Effects of fish removal in the Furnas Lake, Azores. Archipelago. Life and Marine Sciences, 25, 77–87.

    Google Scholar 

  36. Azevedo, J. M. N., Costa, R. M., Couto, A. I., Gonçalves, V., Prestes, A., Valente, A., & Vieira, N. (2006). Biomanipulation and hypolimnetic aeration: Effects on water transparency in Furnas Lagoon. Internal Report of BIOMANIP, Furnas Lagoon Rehabilitation - Study of the impact of biomanipulation through the reduction of cyprinids density. University of the Azores, Ponta Delgada.

  37. Cole, T. M., & Wells, S. A. (2019). CE-QUAL-W2: The two-dimensional, laterally averaged, hydrodynamic and water quality model, version 4.2. User Manual. Department of Civil and Environmental Engineering. Portland State University.

  38. DCEA/FCT (1996). Characterization study of the Furnas Lagoon sediments. Universidade Nova de Lisboa, Department of Environmental Science and Engineering. Regional Directorate for Spatial Planning and Water Resources. Autonomous Region of the Azores.

  39. Abbaspour, K.C. (2011). Swat-Cup2: SWAT Calibration and Uncertainty Programs Manual Version 2, Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag. Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland. 106 pp.

  40. Brutsaert, W. F. (1975). Water quality modeling by Monte Carlo simulation. Water Resources Bulletin, 11(2), 229–236.

    Article  Google Scholar 

  41. USEPA. (1999). Protocol for developing nutrient TMDLs (1st ed.). USEPA, Washington, D.C.

    Google Scholar 

  42. Couture, R.-M., Tominaga, K., Starrfelt J., Moe S.J., Kaste, Ø., & Wright, R. F. (2014). Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate. Environmental Sciences: Processes & Impact. https://doi.org/10.1039/C3EM00630A

  43. DGADR/APA. (2016). Pollution caused by nitrates from agricultural sources. Report, 2012–2015. Direcção-Geral de Agricultura e Desenvolvimento Rural/Agência Portuguesa do Ambiente.

  44. Winchell, M., Srinivasan, R., Di Luzio, M., & Arnold, J. (2008). ArcSWAT 2.1 Interface for SWAT, 2005. Texas Agricultural Experiment Station. USDA Agricultural Reserarch Service.

  45. ESRI. (2008). ArcGIS Desktop: Release 10.5.1 Redlands. CA: Environmental Systems Research Institute.

    Google Scholar 

  46. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute Report No. 406. Texas A&M University System College Station, Texas 77843–2118.

  47. DGT. (2019). Technical specifications of the land use and occupation charter for mainland Portugal for 2018. Directorate-General for the Territory.

  48. Ricardo, B. P., Madeira, M. A.V., Medinda, J. M. B., Marques, M., M., & Furtado, S. (1977). Pedological sketch of the island of São Miguel (Azores). Anais do Instituto Superior de Agronomia.

  49. Fontes, J. C., Cameira, M. R., Borba, L. G., Amado, E. D., & Pereira, L. S. (2011). Nitrogen dynamics in volcanic soils under permanent pasture. Geoderma, 160, 384–393. https://doi.org/10.1016/j.geoderma.2010.10.008

    Article  CAS  Google Scholar 

  50. FAO/IIASA/ISRIC/ISS-CAS/JRC. (2012). Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

  51. Governmental Order no. 92/2012, from 23rd August. Aprova o Programa de Ação para a zona vulnerável n.º 5 (Sete Cidades), constituída pela bacia hidrográfica da lagoa das Sete Cidades, conforme Portaria n.º 1100/2004, de 3 de setembro. [Approves the Action Program for the Vulnerable Zone No. 5 (Seven Cities)].

  52. Governamental Dispach no. 1230/2018, from 5th February (2018). Ambiente e Agricultura, Florestas e Desenvolvimento Rural. Gabinetes dos Secretários de Estado do Ambiente e das Florestas e do Desenvolvimento Rural. Diário da República, 2.ª série — N.º 25 — 5 de fevereiro de 2018. [Environment and Agriculture, Forests and Rural Development].

  53. USDA. (2003). Costs associated with development and implementation of comprehensive nutrient management plans. United States Department of Agriculture, Natural Resources Conservation Service. (Available at: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/rca/?&cid=nrcs143_014114)

  54. USEPA. (2019). Total maximum daily load (TDML) for phosphrous in Conesus Lake. US Environmental Protection Agency. New York State Department of Environmental Conservation.

  55. Debele, B., Srinivasan, R., & Parlange, J. Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling & Assessment, 13(1), 135–153. https://doi.org/10.1007/s10666-006-9075-1

    Article  Google Scholar 

  56. Vogel, R. M., & Fennessey, N. M. (1994). Flow duration curves I: New interpretation and confidence intervals. Journal of Water Resources Planning-ASCE, 120(4), 485–504.

    Article  Google Scholar 

  57. Jones, E., Oliphant, T., Peterson, P. & others. (2021). SciPy: Open source scientific tools for Python. http://www.scipy.org/

  58. Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods, Eighth Edition, Iowa State University Press.

  59. Appling, A. P., Leon, M. C., & McDowell, W. H. (2015). Reducing bias and quantifying uncertainty in watershed flux estimates: The R package loadflex. Ecosphere, 6(12), 269. https://doi.org/10.1890/ES14-00517.1

    Article  Google Scholar 

  60. Porteiro, J., & Calado, H. et al. (1998). Plano de Ordenamento da Bacia Hidrográfica da Lagoa das Furnas, 1ª Fase, Estudos de Caracterização, Vol II, Universidade dos Açores, Departamento de Biologia, Secção de Geografia, Ponta Delgada, Açores. [Environment and Agriculture, Forests and Rural Development].

  61. DRA. (2016). Environmental monitoring of soils in the Furnas lagoon watershed – S. Miguel island. Secretaria Regional dos Recursos Naturais – Direção Regional do Ambiente.

  62. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE, 2007(50), 885–900.

    Article  Google Scholar 

  63. Ayele, G. T., Teshale, E. Z., Yu, B., Rutherfurd, I. D., & Jeong, J. (2017). Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin. Ethiopia. Water, 9, 782. https://doi.org/10.3390/w9100782

    Article  Google Scholar 

  64. Piccioni, F., Casenave, C., Lemaire, B. J., Le Moigne, P., Dubois, P., & Vinçon-Leite, B. (2020). The response of small and shallow lakes to climate change: New insights from hindcast modelling. Earth Syst: Dyn. Discuss. https://doi.org/10.5194/esd-2020-51

    Book  Google Scholar 

  65. Brito, D., Ramos, T. B., Gonçalves, M. C., Morais, M., & Neves, R. (2018). Integrated modelling for water quality management in a eutrophic reservoir in south - Eastern Portugal. Environment and Earth Science. https://doi.org/10.1007/s12665-017-7221-5

    Article  Google Scholar 

  66. Liu, M., Chen, X., Chen, Y., Gao, L., & Deng, H. (2019). Nitrogen retention effects under reservoir regulation at multiple time scales in a subtropical river basin. Water (Switzerland). https://doi.org/10.3390/w11081685

    Article  Google Scholar 

  67. Tasnim, B., Fang, X., Hayworth, J. S., & Tian, D. (2021). Simulating nutrients and phytoplankton dynamics in lakes: Model development and applications. Water, 2021(13), 2088. https://doi.org/10.3390/w13152088

    Article  Google Scholar 

  68. Brett, M. T., Ahopelto, S. K., Brown, H. K., Brynestad, B. E., Butcher, T.W., Coba, E. E., Curtis, C. A., Dara, J. T., Doeden, K. B., Evans, K. R., Fan L., Finley, J. D., Garguilo, N. J., Gebreeyesus, S. M., Goodman, M. K., Gray, K. W., Grinnell, C., Gross, K. L., Hite, B. R. E., Jones, A. J., Kenyon, P. T., Klock, A. M., Koshy, R. E., Lawler, A. M., Lu, M., Martinkosky, L., Miller-Schulze, J. R., Nguyen, Q. T. N., Runde, E. R., Stultz, J. M., Wang, S., White, F. P., Wilson, C. H., Wong, A. S., Wu, S. Y., Wurden, P. G., Young, T. R. & Arhonditsis, G. B. (2016). The modeled and observed response of Lake Spokane hypolimnetic dissolved oxygen concentrations to phosphorus inputs. Lake and Reservoir Management32–3, 246–258. https://doi.org/10.1080/10402381.2016.1170079

  69. Luo, L., Hamilton, D., Lan, J., Mcbride, C., & Trolle, D. (2018). Autocalibration of a one-dimensional hydrodynamic-ecological model (DYRESM 4.0-CAEDYM 3.1) using a Monte Carlo approach: Simulations of hypoxic events in a polymictic lake. Geoscientific Model Development (GMD), 11, 903–913.

    Article  CAS  Google Scholar 

  70. Kim, D., Kim, Y., & Kim, B. (2019). Simulation of eutrophication in a reservoir by CE-QUAL-W2 for the evaluation of the importance of point sources and summer monsoon. Lake Reservoir Management, 35, 64–76. https://doi.org/10.1080/10402381.2018.1530318

    Article  CAS  Google Scholar 

  71. Kanninen, J., Kauppi, L., & Yrjänä, E. R. (1982). The role of nitrogen as a growth limiting factor in the eutrophic Lake Vesijarvi, southern Finland. Hydrobiologia, 86, 81–85. https://doi.org/10.1007/BF00005791

    Article  CAS  Google Scholar 

  72. Sommer, U. (1989). Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnology and Oceanography, 34(7), 1162–1173.

    Article  CAS  Google Scholar 

  73. Elser, J. J., Marzolf, E. R., & Goldman, C. R. (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the fresh-waters of North America: A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 47(7), 1468–1477.

    Article  CAS  Google Scholar 

  74. Diaz, M. M., & Pedrozo, F. L. (1996). Nutrient limitation in Andean-Patagonian lakes at latitude 40–41 degrees S. Archiv fur Hydrobiologie, 138(1), 123–143.

    Article  CAS  Google Scholar 

  75. Zhao, X., Shen, Z. Y., Xiong, M., & Qi, J. (2011). Key uncertainty sources analysis of water quality model using the first order error method. International Journal of Environmental Science and Technology, 8, 137–148. https://doi.org/10.1007/BF03326203

    Article  CAS  Google Scholar 

  76. PGA. (2021). Environmental management plan. Presidency Government of the Azores.

  77. USEPA. (1983). Results of the nationwide urban runoff program. NTIS PB84–185552. U.S. Environmental Protection Agency, Washington, DC.

  78. Heyman, U., Ryding, S.-O., & Forsberg, C. (1984). Frequency distributions of water quality variables. Water Research, 18(7), 787–794. https://doi.org/10.1016/0043-1354(84)90262-8

    Article  CAS  Google Scholar 

  79. Van Buren, M. A., Watt, W. E. & Marsalek, J. (1997). Application of the log-normal and normal distributions to stormwater quality parameters, Water Research, 31(1). https://doi.org/10.1016/S0043-1354(96)00246-1

  80. Leutnant, D., Muschalla, D., & Uhl, M. (2018). Statistical distribution of TSS event loads from small urban environments. Water, 10, 769. https://doi.org/10.3390/w10060769

    Article  Google Scholar 

  81. SNIRH. (2021). National information system of water resources. Portuguese Environmental Agency [Sistema Nacional de Informação de Recursos Hídricos]. (Available at: http://www.https://snirh.apambiente.pt)

  82. CHTAJO. (2021). Automatic water quality information system. Tejo river watershed. Spain Government [Sistema Automático de información de Calidad de las Aguas (Red SAICA)] (Available at: http://www.chtajo.es/LaCuenca/CalidadAgua/AguasSup/Paginas/RedSAICA.aspx)

  83. Directive 2000/60/EC2000. (2000). Directive 2000/60/EC of the European Parliament and of the Council.

  84. Loucks, D. P., & Van Beek, E. (2017). Water quality modeling and prediction. In Water resource systems planning and management (pp. 417–446). Springer.

  85. Rode, M., Arhonditsis, G., Balin, D., Kebede, T., Krysanova, V., Van Griensven, A., & Van Der Zee, S. E. (2010). New challenges in integrated water quality modelling. Hydrological Processes, 24(24), 3447–3461. https://doi.org/10.1002/hyp.7766

    Article  Google Scholar 

  86. Wang, Q., Li, S., Jia, P., Qi, C., & Ding, F. (2013). A review of surface water quality models. The Scientific World Journal, 231768. Retrieved August 14, 2019, from. https://doi.org/10.1155/2013/231768

  87. Hoang, L., Mukundan, R., Moore, K. E. B., Owens, E. M., & Steenhuis, T. S. (2018). The effect of input data resolution and complexity on the uncertainty of hydrological predictions in a humid vegetated watershed. Hydrology and Earth System Sciences, 22, 5947–5965. https://doi.org/10.5194/hess-22-5947-2018

    Article  Google Scholar 

  88. Rodríguez, R., Pastorini, M., Etcheverry, L., Chreties, C., Fossati, M., Castro, A., & Gorgoglione, A. (2021). Water- quality data imputation with a high percentage of missing values: A machine learning approach. Sustainability, 2021(13), 6318. https://doi.org/10.3390/su13116318

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Regional Secretariat for Environment for providing the hydrological and water quality data which supported this study and other colleagues for their inputs and insights (namely, Carla Melo, Cristina Padilha, Daniel Silva, and Vanessa Ramos, from Simbiente Azores – Environmental Engineering and Management).

Funding

This study had the support of national funds through Fundação para a Ciência e Tecnologia (FCT), under the project LA/P/0069/2020 granted to the Associate Laboratory ARNET, and the strategic project UDIB/04292/2020 granted to MARE.

Author information

Authors and Affiliations

Authors

Contributions

MA conceived the study, performed the simulations, and wrote de manuscript. RR, SC, AR, and PC contributed to the study design and to the results analysis. All authors contributed to the discussion and manuscript revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manuel Almeida.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Initial values of hydrodynamic and water quality parameters were considered in the CE-QUAL-W2 and in the SWAT model. The remaining parameters were set to default values specified in the CE-QUAL-W2 [32] and in the SWAT user manual [41].

1.1 Listing of CE-QUAL-W2 Model Parameters

Table 8 Hydraulic coefficients
Table 9 Extinction coefficients
Table 10 Rates and constants: phytoplankton
Table 11 Rates and constants: organic matter

1.2 Listing of SWAT Model Parameters

Table 12 SWAT model parameters: streamflow, mineral nitrogen, and soluble phosphorus calibration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M., Rebelo, R., Costa, S. et al. Long-Term Water Quality Modeling of a Shallow Eutrophic Lagoon with Limited Forcing Data. Environ Model Assess 28, 201–225 (2023). https://doi.org/10.1007/s10666-022-09844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09844-3

Keywords

Navigation