Skip to main content

Advertisement

Log in

Natural and anthropogenic influence on soil erosion in a rural watershed in the Brazilian southeastern region

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Human activities have been driven land cover, provoking acceleration of the erosive process and alteration on the soil characteristics. To explore the effects of human disturbance, we investigated the influences of natural and anthropogenic features on soil quality and soil erosion indicators (EI) within a Brazilian rural watershed located in Bauru Municipality, State of São Paulo. A pre-established set of soil EI was used to evaluate the influence of anthropogenic land cover categories on the presence and severity of erosion, related with spatial variations of soil attributes. On-site visits were carried out to measure the occurrence and the intensity of eleven separate EI values and to collect undisturbed topsoil samples for subsequent analyses. We registered 17 occurrences of EIs, distributed in ten locals. Occurrence and intensity of EIs were related to degree of sheet erosion. The EI qualities were more strongly associated with land cover management practices than to local topographic features. The occurrence of EIs and characteristics of soil and soil organic matter (SOM) were not significantly self-correlated. Although land cover class seems to influence soil properties and SOM attributes, we observed that the granulometric composition of the soils also contributes to the structural characteristics of the soil and consequently to the dynamic loss and gain of soil carbon. Sites covered with natural remnant vegetation (NRV) store 96.5 Mg ha−1 of C and grassy and tilled soils stored more C than NRV, 100.1 and 142.4 Mg ha−1, respectively. Due to the influence of soil texture over the soil C dynamic, we observe that in Bauru, pastured areas have high potential for sequestration of C if factors such as fire and/or erosion were avoided or effectively controlled. Results from this study show that human disturbance substantially affects soil properties within of southeastern region of Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ABGE (Brazilian Association of Geology for Engineering) (1987) 4th national symposia of erosion control—proceedings. Marilia–SP, Brazil

  • ABGE (Brazilian Association of Geology for Engineering) (1995) 5th national symposia of erosion control—proceedings. Bauru–SP, Brazil

  • Alewell C, Schaub M, Conen F (2009) A method to detect soil carbon degradation during soil erosion. Biogeosciences 6:2541–2547. doi:10.5194/bg-6-2541-2009

    Article  CAS  Google Scholar 

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031–1040. doi:10.1029/2002GB001903

    Article  Google Scholar 

  • Anderson EW (1974) Indicators of soil movement on range watersheds. J Range Manage 27:244–247. doi:10.2307/3897043

    Article  Google Scholar 

  • Assad ED, Pinto HS, Martins SC, Groppo JD, Salgado PR, Evangelista B, Vasconcellos E, Sano EE, Pavão E, Luna R, Camargo PB, Martinelli LA (2013) Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey. Biogeosci Discuss 10:5499–5533. doi:10.5194/bgd-10-5499-2013

    Article  Google Scholar 

  • Ayres M, Ayres M Jr, Ayres DL, Santos AA (2007) Bioestat 5.0—Manual do usuário. Federal University of Pará, Belém

    Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230. doi:10.1016/S0167-1987(99)00107-5

    Article  Google Scholar 

  • Bernoux M, Carvalho MCS, Volkoff B, Cerri CC (2002) Brazil’s soil carbon stocks. Soil Sci Soc Am J 66:888–896. doi:10.2136/sssaj2002.0888

    Article  CAS  Google Scholar 

  • Boeckx P, Paulino L, Oyarzun C, Cleemput O, Godoy R (2005) Soil δ15N patterns in old-growth forests of southern Chile as integrator for N-cycling. Isot Environ Healt Stud 41:249–259. doi:10.1080/10256010500230171

    Article  CAS  Google Scholar 

  • Boutton TW, Yamasaki S (1996) Mass spectrometry of soils. Library of Congress cataloging-in-publication data. New York

  • Brannstrom C (2010) Forests for cotton: institutions and organizations in Brazil’s mid-twentieth-century cotton boom. J Hist Geogr 36:169–182. doi:10.1016/j.jhg.2009.10.001

    Article  Google Scholar 

  • Brannstrom C, Oliveira AMS (2000) Human modification of stream valleys in the western plateau of São Paulo, Brazil: implications for environmental narratives and management. Land Degrad Dev 11:535–548. doi:10.1002/1099-145X(200011/12)11:6<535:AID-LDR412>3.0.CO;2-L

    Article  Google Scholar 

  • Braz SP, Urquiaga S, Alves BJ, Jantalia CP, Guimarães AP, Santos CA, Santos SC, Pinheiro EFM, Boddey RM (2013) Soil carbon stocks under productive and degraded pastures in the Brazilian Cerrado. Soil Sci Soc Am J 77:914–928. doi:10.2136/sssaj2012.0269

    Article  CAS  Google Scholar 

  • Cantón Y, Sole-Benet A, Asensio C, Chamizo S, Puigdefabregas J (2009) Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena 77:192–199. doi:10.1016/j.catena.2008.12.011

    Article  Google Scholar 

  • Casao R Jr, Araujo AG, Llanillo RF (2012) No-till agriculture in southern Brazil—factors that facilitated the evolution of the system and the development of the mechanization of conservation farming. Publication of FAO and IAPAR, Rome

    Google Scholar 

  • CEPAGRI (Center for Climatic and Meteorological Researches applied in Agriculture) (2010) Clima dos municípios paulistas. http://www.cpa.unicamp.br/outras-informacoes/clima-dos-municipios-paulistas.html. Accessed 20 July 2013

  • Cerda A (2000) Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Soil Tillage Res 57:159–166. doi:10.1016/S0167-1987(00)00155-0

    Article  Google Scholar 

  • Chen L, Yang L, Wei W, Wang Z, Mo B, Cai G (2013) Towards sustainable integrated watershed ecosystem management: a case study in Dingxi on the Loess Plateau, China. Environ Manage 51:126–137. doi:10.1007/s00267-011-9807-0

    Article  Google Scholar 

  • Comerford NB, Franzluebbers AJ, Stromberger ME, Morris L, Markewitz D, Moore R (2013) Assessment and evaluation of soil ecosystem services. Soil Horiz 54. doi:10.2136/sh12-10-0028

  • de Souza Braz AM, Fernandes AR, Alleoni LRF (2013) Soil attributes after the conversion from forest to pasture in amazon. Land Degrad Dev 24:33–38. doi:10.1002/ldr.1100

    Article  Google Scholar 

  • Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agr Ecosyst Environ 103:365–373. doi:10.1016/j.agee.2003.12.008

    Article  CAS  Google Scholar 

  • Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538. doi:10.4141/cjss95-075

    Article  CAS  Google Scholar 

  • EMBRAPA (Brazilian Enterprise of Agricultural Research) (1997) Manual de métodos de análise de solos. 2nd edition. Rio de Janeiro–RJ, Brazil

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys 40:503–537. doi:10.1146/annurev.arplant.40.1.503

    Article  CAS  Google Scholar 

  • Gerber S, Hedin LO, Oppenheimer M, Pacala SW, Shevliakova E (2010) Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochem Cycle 2: GB1001. doi:10.1029/2008GB003336

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta-analysis. Glob Change Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Gurevitch J, Scheiner SM, Fox GA (2002) The ecology of plants. Sinauer associates incorporated

  • Heitschmidt RK, Stuth JW (1991) Grazing management: an ecological perspective. Timber Press, Portland

    Google Scholar 

  • Hobbie EA, Ouimette AP (2009) Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95:355–371. doi:10.1007/s10533-009-9328-6

    Article  CAS  Google Scholar 

  • IBGE (Brazilian Institute for Geography and Statistics) (2009) Manual Técnico de Geomorfologia. 2nd Edition. Rio de Janeiro–RJ, Brazil

  • IBGE (Brazilian Institute for Geography and Statistics) (2012) Mapeamento topográfico. ftp://geoftp.ibge.gov.br/mapeamento_sistematico/topograficos. Accessed 10 June 2013

  • IPT (São Paulo State Institute of Technology) (1981a) Mapa geomorfológico do Estado de São Paulo: 1:1.000.000. IPT, vol. II, Publication IPT 1183, São Paulo, SP, Brazil

  • IPT (São Paulo State Institute of Technology) (1981b) Mapa geológico do Estado de São Paulo: 1:500.000. IPT, vol. I, Publication IPT 1184, São Paulo, SP, Brazil

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450. doi:10.1016/S0160-4120(02)00192-7

    Article  CAS  Google Scholar 

  • Lozano-García B, Parras-Alcántara L (2014) Variation in soil organic carbon and nitrogen stocks along a toposequence in a traditional Mediterranean olive grove. Land Degrad Dev. doi:10.1002/ldr.2284

    Google Scholar 

  • Madari BE (2004) Procedimento para uma estimativa compartimentada do sequestro de carbono no solo. Technical Communication Embrapa number 22, Colombo, Paraná, Brazil

  • Martinez-Trinidad S, Cotler H, Cruz-Cardenas G (2012) The aggregates stability indicator to evaluate soil spatiotemporal change in a tropical dry ecosystem. J Soil Sci Plant Nutr 12:363–377. doi:10.4067/S0718-95162012000200015

    Article  Google Scholar 

  • Mondelli G, Giacheti HL, Boscov MEG, Elis VR, Hamada J (2007) Geoenvironmental site investigation using different techniques in a municipal solid waste disposal site in Brazil. Environ Geol 52:871–887. doi:10.1007/s00254-006-0529-1

    Article  CAS  Google Scholar 

  • Nascimento VF (2012) Proposta para indicação de áreas para a implantação de aterro sanitário no município de Bauru-SP, utilizando análise multi-critério de decisão e técnicas de geoprocessamento. Dissertation, São Paulo State University, p 228

  • Okoba BO, De Graaff J (2005) Farmers’ knowledge and perceptions of soil erosion and conservation measures in the Central Highlands, Kenya. Land Degrad Dev 16:475–487. doi:10.1002/ldr.678

    Article  Google Scholar 

  • Okoba BO, Sterk G (2006a) Quantification of visual soil erosion indicators in Gikuuri catchment in the central highlands of Kenya. Geoderma 134:34–47. doi:10.1016/j.geoderma.2005.08.013

    Article  Google Scholar 

  • Okoba BO, Sterk G (2006b) Farmers’ identification of erosion indicators and related erosion damage in the Central Highlands of Kenya. Catena 65:292–301. doi:10.1016/j.catena.2005.12.004

    Article  Google Scholar 

  • Oliveira JB, Camargo MN, Rossi M, Calderano Filho B (1999) Mapa Pedológico do Estado de São Paulo. Legenda Expandida. Instituto Agronômico & EMBRAPA, Campinas

    Google Scholar 

  • OSU (Oregon State University) (1980) Sandy soils and soil compactation. Circular information 687. http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/24727/CLNO687.pdf?sequence=1 Accessed 13 Sept 2013

  • Pinheiro MHO, Arantes SCM, Jimenes-Rueda JR, Monteiro R (2009) Caracterização edáfica de um ecótono savânico-florestal no sudeste brasileiro. Iheringia 64:15–24

    Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael BAS, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land use change in the temperate zone–carbon response functions as a model approach. Glob Change Biol 17:2415–2427. doi:10.1111/j.1365-2486.2011.02408.x

    Article  Google Scholar 

  • Poesen J, Torri D, Bunte K (1994) Effects of rock fragments on soil erosion by water at different spatial scales: a review. Catena 23:141–166. doi:10.1016/0341-8162(94)90058-2

    Article  Google Scholar 

  • Poesen J, Nachtergale J, Vertstraeten G, Valentin C (2003) Gully erosion and environmental change. Importance and research needs. Catena 50:91–134. doi:10.1016/S0341-8162(02)00143-1

    Article  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162. doi:10.1016/S0169-5347(00)02098-X

    Article  Google Scholar 

  • Ross JLS, Moroz IC (1997) Mapa geomorfológico do Estado de São Paulo. FFLCH/USP e IPT/FAPESP, Maps and reports, São Paulo, SP, Brazil, São Paulo

    Google Scholar 

  • Ruiz-Sinoga JD, Martinez-Murillo JF (2009) Effects of soil surface components on soil hydro-logical behavior in a dry Mediterranean environment (Southern Spain). Geomorphology 108:234–245. doi:10.1016/j.geomorph.2009.01.012

    Article  Google Scholar 

  • Sanchis MPS, Torri D, Borselli L, Bryan R, Poesen J, Yanez M, Cremer C (2009) Estimating parameters of the channel width—flow discharge relation using rill and gully channel junction data. Earth Surf Proc Land 34:2023–2030. doi:10.1002/esp.1887

    Article  Google Scholar 

  • Seybold CA, Herrick JE (2001) Aggregate stability kit for soil quality assessments. Catena 44:37–45. doi:10.1016/S0341-8162(00)00175-2

    Article  Google Scholar 

  • Sietz D, Untied B, Walkenhorst O, Lüdeke MKB, Mertins G, Petschel-Held G, Schellnhuber HJ (2006) Smallholder agriculture in Northeast Brazil: assessing heterogeneous human-environmental dynamics. Reg Environ Change 6:132–146. doi:10.1007/s10113-005-0010-9

    Article  Google Scholar 

  • Silva AM, Nogueira DP, Ikematsu P, Silveira FM, Bomback M, Alves SH, Paula FP, Camargo PB (2009) Carbon stocks and isotopic composition of the organic matter in soils covered by native vegetation and pasture in Sorocaba, SP, Brazil. Int J of Environ Res 3:435–440

    CAS  Google Scholar 

  • Silva AM, Alvares CA, Watanabe CH (2011) Natural potential for erosion for Brazilian territory, pp 1–24. In: Godone D, Stanchi S. (Org.). Soil Erosion/book 2. 1st ed. Intechopen, Rijeka, Croatia

  • Sobral AC (2013) Análise dos parâmetros físicos e isotópicos do carbono e nitrogênio no solo como indicadores ambientais para uma microbacia rural em Bauru-SP. MSc Dissertation, São Paulo State University, p 109

  • Sobral AC, Silva AM (2011) Avaliação da qualidade do solo em uma microbacia rural através de parâmetros isotópicos, município de Bauru/SP. In: 4th symposia of ecological restoration—proceedings. São Paulo–SP, Brazil 16th 18th November 2011, p 335

  • Tesfahunegn GB, Tamene L, Vlek PLG (2011) A participatory soil quality assessment in Northern Ethiopia’s Mai-Negus catchment. Catena 86:1–13. doi:10.1016/j.catena.2011.01.013

    Article  Google Scholar 

  • Tesfahunegn GB, Tamene L, Vlek PL, Mekonnen K (2013) Assessing farmers’ knowledge of weed species, crop type and soil management practices in relation to soil quality status in Mai-Negus catchment, Northern Ethiopia. Land Degrad Dev. doi:10.1002/ldr.2233

    Google Scholar 

  • Thevenot M, Dignac MF, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211. doi:10.1016/j.soilbio.2010.03.017

    Article  CAS  Google Scholar 

  • USDA (United States Department of Agriculture) (2008) Soil quality indicators—bulk density. http://soils.usda.gov/sqi/assessment/files/bulk_density_sq_physical_indicator_sheet.pdf. Accessed 15 Sept 2013

  • Valentin C, Poesen J, Yong L (2005) Gully erosion: impacts, factors and control. Catena 63:132–153. doi:10.1016/j.catena.2005.06.001

    Article  CAS  Google Scholar 

  • Vervaet H, Massart B, Boeckx P, Van Cleemput O, Hofman G (2003) Use of principal component analysis of assess factors controlling net N mineralization in deciduous and coniferous forest soils. Biol Fertil Soils 75:93–101. doi:10.1007/s00374-002-0512-2

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses - a guide to conservation planning. Department of Agriculture. Washington, U.S.D.A., U.S. Agricultural Handbook N 537, USA

  • Zegeye AD, Steenhuis TS, Blake RW, Kidnau S, Collick AS, Dadgari F (2010) Assessment of soil erosion processes and farmer perception of land conservation in Debre Mewi watershed near Lake Tana, Ethiopia. Ecohydrol Hydrobiol 10:297–306. doi:10.2478/v10104-011-0013-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Marco da Silva.

Additional information

Communicated by Juan Ignacio Lopez Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobral, A.C., Peixoto, A.S.P., Nascimento, V.F. et al. Natural and anthropogenic influence on soil erosion in a rural watershed in the Brazilian southeastern region. Reg Environ Change 15, 709–720 (2015). https://doi.org/10.1007/s10113-014-0667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0667-z

Keywords

Navigation