Skip to main content

Advertisement

Log in

Lessons from the past in weather variability: sowing to ripening dynamics and yield penalties for northern agriculture from 1970 to 2012

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

There is evidence for overall spring advancement and phenology shift across the northern hemisphere, including northern Europe, where cereals are grown despite the very short growing season. This study focused on one of the principal risks associated with the short growing season, weather-induced variability in sowing time. The aim was to characterize variation in sowing time, quantify the impacts on crop growth and document associations with weather conditions and variability. We also assessed whether any systematic changes occurred as potential signs of autonomous adaptation to changed conditions. Shifts in spring cereal sowing time had no consistent impact on time of maturity as a result of variable weather conditions. All spring cereal cultivars required fewer days, although more cumulated degree-days, to mature after delays in sowing. In the 1990s and 2000s, sowing tended to start earlier than in the 1970s and 1980s. This was attributable to earlier onset of the growing season. Furthermore, more favorable harvest conditions facilitated harvest after maturity. As more land has been allocated to late-maturing wheat (Triticum aestivum L.) compared with early-maturing barley (Hordeum vulgare L.) during recent decades, autonomous adaptation to climate change has already begun in the northernmost agricultural region of Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cammarano D, Payero J, Basso B et al (2012) Adapting wheat sowing dates to projected climate change in the Australian subtropics: analysis of crop water use and yield. Crop Pasture Sci 63:974–986

    Article  Google Scholar 

  • Elguindi N, Rauscher SA, Giorgi F (2013) Historical and future changes in maximum and minimum temperature records over Europe. Clim Chang 117:415–431

    Article  Google Scholar 

  • Himanen SJ, Hakala K, Kahiluoto H (2013) Crop responses to climate and socioeconomic change in northern regions. Reg Environ Chang 13:17–32

    Article  Google Scholar 

  • IPCC SREX (2012) In: Field CB, Barros V, Stocker TF et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Group I and Working Group II of the Intergovernmental Panel on Climate Change, Summary for Policymakers, p 30

  • Kaukoranta T, Hakala K (2008) Impact of spring warming on sowing times of cereal, potato and sugar beet in Finland. Agric Food Sci 17:165–176

    Article  Google Scholar 

  • Kaukoranta T, Tahvonen R, Ylämäki A (2010) Climatic potential and risks for apple growing by 2040. Agric Food Sci 19:144–159

    Article  Google Scholar 

  • Kirby EJM (1969) The effect of sowing date and plant density on barley. Ann Appl Biol 63:513–521

    Article  Google Scholar 

  • Kirbyshire AL, Bigg GR (2010) Is the onset of the English summer advancing? Clim Chang 100:419–431

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phonological seasons in Germany from 1951 to 1996. Glob Chang Biol 7:657–666

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006) European phonological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Parent B, Tardieu F (2012) Temperature responses of developmental processes have not been affected by breeding in different ecological areas of 17 crop species. New Phytol 194:760–774

    Article  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phonological response to global warming. Glob Chang Biol 13:1860–1872

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP et al (eds) (2007) Climate change 2007: working group II: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

  • Pau S, Woklovich EM, Cook BI et al (2011) Predicting phenology by integrating ecology, evolution and climate science. Glob Chang Biol 17:3633–3643

    Article  Google Scholar 

  • Peltonen-Sainio P (2012) Crop Production in a Northern Climate, in: Meybeck et al. (eds), Proceedings of a Joint FAO/OECD Workshop, building resilience to climate change in the agriculture sector. http://www.fao.org/agriculture/crops/news-events-bulletins/detail/en/item/134976/. pp 183–216

  • Peltonen-Sainio P (2013) Maatalous hyödyntää hanakasti suotuisat säät. Ilmastokatsaus syyskuu 2013. http://ilmatieteenlaitos.fi/ilmastokatsaus-lehti. pp 4–5 (in Finnish)

  • Peltonen-Sainio P, Niemi JK (2012) Protein crop production at the northern margin of farming: to boost, or not to boost. Agric Food Sci 21:370–383

    Google Scholar 

  • Peltonen-Sainio P, Rajala A (2014) Use of quality seed as a means to sustainably intensify northern European barley production. J Agric Sci 152:93–103

    Article  Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Venäläinen A (2009a) Comparing regional risks in producing turnip rape and oilseed rape—today in light of long-term datasets. Acta Agric Scand B Soil Plant Sci 59:118–128

    CAS  Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Hakala K, Ojanen H (2009b) Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland. Agric Food Sci 18:171–190

    Article  Google Scholar 

  • Peltonen-Sainio P, Rajala A, Känkänen H, Hakala K (2009c) Improving farming systems in northern European conditions. In: Sadras Calderini (ed) Crop physiology: applications for genetic improvement and agronomy. Elsevier, Amsterdam, pp 71–97

    Chapter  Google Scholar 

  • Peltonen-Sainio P, Hakala K, Jauhiainen L (2011a) Climate induced overwintering challenges for wheat and rye in northern agriculture. Acta Agric Scand B Soil Plant Sci 61:75–83

    Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Hakala K (2011b) Crop responses to temperature and precipitation according to long-term multi-location trials at high-latitude conditions. J Agric Sci 149:49–62

    Article  Google Scholar 

  • Peltonen-Sainio P, Rajala A, Jauhiainen L (2011c) Hidden viability risks in the use of farm-saved small-grain seed. J Agric Sci 149:713–724

    Article  Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Niemi JK et al (2013) Do farmers rapidly adapt to past growing conditions by sowing different proportions of early and late maturing cereals and cultivars? Agric Food Sci 22:331–341

    Google Scholar 

  • Reyer CPO, Leuzinger S, Rammig A et al (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Chang Biol 19:75–89

    Article  Google Scholar 

  • Rounsevell MDA, Ewert F, Reginster I et al (2005) Future scenarios of European agricultural land use. II. Projecting changes in cropland and grassland. Agric Ecosyst Environ 107:117–135

    Article  Google Scholar 

  • Ruosteenoja K, Tuomenvirta H, Jylhä K (2007) GCM-based regional temperature and precipitation change estimates for Europe under four SRES scenarios applying a super-ensemble pattern-scaling method. Clim Chang 81:193–208

    Article  Google Scholar 

  • Saikkonen K, Taulavuori K, Hyvönen T et al (2012) Climate change-driven species’ range shifts filtered by photoperiodism. Nat Clim Chang 2:239–242

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351

    Article  Google Scholar 

  • Singh S, Gupta AK, Gupta SK, Kaur N (2010) Effect of sowing time on protein quality and starch pasting characteristics in wheat (Triticum aestivum L.) genotypes grown under irrigated and rain-fed conditions. Food Chem 122:559–565

    Article  CAS  Google Scholar 

  • Spink JH, Kirby EJM, Forst DL et al (2000) Agronomic implications of variation in wheat development due to variety, sowing time, site and season. Plant Var Seeds 13:91–105

    Google Scholar 

  • Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30:2247–2256

    Article  Google Scholar 

  • Tike (2012). The yearbook of farm statistics 2012. Information Centre of the Ministry of Agriculture and Forestry. http://www.maataloustilastot.fi/en/yearbook-farm-statistics-2012_en

  • Trnka M, Olesen JE, Kersebaum KC et al (2011) Agroclimatic conditions in Europe under climate change. Glob Chang Biol 17:2298–2318

    Article  Google Scholar 

  • White JW, Kimball BA, Wall GW et al (2011) Responses of time of anthesis and maturity to sowing dates and infrared warming in spring wheat. Field Crop Res 124:213–222

    Article  Google Scholar 

  • Ylhäisi J, Tietäväinen H, Peltonen-Sainio P et al (2010) Growing season precipitation in Finland under recent and projected climate. Nat Hazard Earth Syst 10:1563–1574

    Article  Google Scholar 

  • Zheng B, Chenu K, Dreccer F, Chapman SC (2012) Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Glob Chang Biol 18:2899–2914

    Article  Google Scholar 

Download references

Acknowledgments

The work was financed by the Finnish Ministry of Agriculture and Forestry and MTT Agrifood Research Finland as a part of an on-going consortium project entitled Improving resilience to climate change and variation induced risks in agriculture (ILMAPUSKURI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirjo Peltonen-Sainio.

Additional information

Editor: Christopher Reyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (PPTX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peltonen-Sainio, P., Jauhiainen, L. Lessons from the past in weather variability: sowing to ripening dynamics and yield penalties for northern agriculture from 1970 to 2012. Reg Environ Change 14, 1505–1516 (2014). https://doi.org/10.1007/s10113-014-0594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0594-z

Keywords

Navigation