Skip to main content

Advertisement

Log in

Farmers in southwestern France think that their arable cropping systems are already adapted to face climate change

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Climate change, particularly increasing temperatures and decreasing and highly variable water availability, will affect temperate field crop production. Beyond expected positive or negative impact assessment, there is a need to explore adaptation options for arable cropping systems. Involvement of farmers in the cropping system design process allows tailoring locally relevant and innovative adaptation options while taking into account interactions between crop management choices. In southwestern France, we devised and applied a participatory methodology of cropping system conception adapted to the climate change context. This method is based on prototyping methods as well as the vulnerability concept, and follows three successive steps: presentation of exposure, assessment of crop sensitivity during individual interviews with farmers, and conception of crop system adaptations during collective workshops. The proposed cropping systems differ according to access to water resources for irrigation of farmers. Non- or hardly irrigating farmers considered their current cropping systems to be already adapted to climate change, and focused on improving their efficiency using already known management practices. They did not feel endangered by the future climate scenario. Irrigating farmers were inclined to substitute sensitive crops or even redesign their cropping systems. Nevertheless, they had difficulty to distance themselves from current cropping choices and economical or technical constraints. Proposed cropping systems were thus not very disruptive compared to current practices. This work can be supplemented through assessments of cropping system sustainability and performance according to water and thermal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal A (1995) Dismantling the divide between indigenous and scientific knowledge. Dev Change 26(3):413–439. doi:10.1111/j.1467-7660.1995.tb00560.x

    Article  Google Scholar 

  • Alletto L, Coquet Y, Justes E (2011) Effects of tillage and fallow period management on soil physical behaviour and maize development. Agric Water Manag 102(1):74–85. doi:10.1016/j.agwat.2011.10.008

    Article  Google Scholar 

  • Ash A, Nelson R, Howden M, Crimp S (2008) Australian agriculture adapting to climate change: balancing incremental innovation and transformational change. Outlook 2008, 4-5 March 2008, Canberra

  • Barreteau O, Bots PWG, Daniell KA (2010) A framework for clarifying “Participation” in participatory research to. Ecol Soc 15(2):22

    Google Scholar 

  • Battaglini A, Barbeau G, Bindi M, Badeck FW (2009) European winegrowers’ perceptions of climate change impact and options for adaptation. Reg Environ Change 9(2):61–73

    Article  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(January):240–244

    Article  CAS  Google Scholar 

  • Bergez JE, Colbach N, Crespo O, Garcia F, Jeuffroy MH, Justes E, Loyce C et al (2010) Designing crop management systems by simulation. Eur J Agron 32:3–9

    Article  Google Scholar 

  • Bergez J-E, Carpy-Goulard F, Paradis S, Ridier A (2011) Participatory foresight analysis of the cash crop sector at the regional level: case study from southwestern France. Reg Environ Change 11(4):951–961. doi:10.1007/s10113-011-0232-y

    Article  Google Scholar 

  • Blazy J-M, Ozier-Lafontaine H, Doré T, Thomas A, Wery J (2009) A methodological framework that accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in Guadeloupe. Agric Syst 101(1–2):30–41. doi:10.1016/j.agsy.2009.02.004

    Article  Google Scholar 

  • Bousquet F, Trébuil G, Hardy B (eds) (2005) Companion modeling and multi-agent systems for integrated natural resource management in Asia. IRRI, Los Baños, p 360

    Google Scholar 

  • Brisson N, Levrault F (eds) (2010) Climate change, agriculture and forests in France: simulations of the impacts on the main species. The Green Book of the CLIMATOR project (2007–2010). Green Book Climator. ADEME, Angers, p 336

    Google Scholar 

  • Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res 119(1):201–212. doi:10.1016/j.fcr.2010.07.012

    Article  Google Scholar 

  • Cassman K, Dobermann A, Walters D, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28:315–358

    Article  Google Scholar 

  • Castellazzi MS, Wood GA, Burgess PJ, Morris J, Conrad KF, Perry JN (2008) A systematic representation of crop rotations. Agric Syst 97(1–2):26–33. doi:10.1016/j.agsy.2007.10.006

    Article  Google Scholar 

  • Challinor A (2009) Towards the development of adaptation options using climate and crop yield forecasting at seasonal to multi-decadal timescales. Environ Sci Policy 12(4):453–465. doi:10.1016/j.envsci.2008.09.008

    Article  Google Scholar 

  • Chmielewski F-M, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121(1–2):69–78. doi:10.1016/S0168-1923(03)00161-8

    Article  Google Scholar 

  • Clavel L, Soudais J, Baudet D, Leenhardt D (2011) Integrating expert knowledge and quantitative information for mapping cropping systems. Land Use Policy 28(1):57–65. doi:10.1016/j.landusepol.2010.05.001

    Article  Google Scholar 

  • Cohen S, Neilsen D, Smith S, Neale T, Taylor B, Barton M, Merritt W et al (2006) Learning with local help: expanding the dialogue on climate change and water management in the Okanagan Region, British Columbia, Canada. Clim Change 75(3):331–358. doi:10.1007/s10584-006-6336-6

    Article  Google Scholar 

  • Currie RS, Klocke NL (2005) Impact of a terminated wheat cover crop in irrigated corn on atrazine rates and water use efficiency. Weed Sci 53:709–716

    Article  CAS  Google Scholar 

  • Darnhofer I, Bellon SS, Dedieu BB, Milestad R (2010) Adaptiveness to enhance the sustainability of farming systems. A review. Agron Sustain Dev 30(3):545–555. doi:10.1051/agro/2009053

    Article  Google Scholar 

  • De Martonne E (1926) Une Nouvelle fonction climatologique. L’Indice d’aridité. Météorolgoie 68:449–458

    Google Scholar 

  • Debaeke P, Aboudrare A (2004) Adaptation of crop management to water-limited environments. Eur J Agron 21(4):433–446

    Article  Google Scholar 

  • Douthwaite B, Beaulieu N, Lundy M, Peters D (2009) Understanding how participatory approaches foster innovation. Int J Agric Sustain 7(1):42–60

    Article  Google Scholar 

  • Drury CF, Tan CS, Reynolds WD, Welacky TW, Weaver SE, Hamill AS, Vyn TJ (2003) Impacts of zone tillage and red clover on corn performance and soil physical quality. Soil Sci Soc Am J 67(3):867. doi:10.2136/sssaj2003.0867

    Article  CAS  Google Scholar 

  • Dury J, Schaller N, Garcia F, Reynaud A, Bergez JE (2011) Models to support cropping plan and crop rotation decisions. A review. Agron Sustain Dev 32(2):567–580. doi:10.1007/s13593-011-0037-x

    Article  Google Scholar 

  • Easterling W, Apps M (2005) Assessing the consequences of climate change for food and forest resources: a view from the IPCC. Clim Change 70:165–189

    Article  Google Scholar 

  • Fleming A, Vanclay F (2010) Farmer responses to climate change and sustainable agriculture. A review. Agron Sustain Dev 30(1):11–19. doi:10.1051/agro/2009028

    Article  Google Scholar 

  • Füssel H (2007) Adaptation planning for climate change: concepts, assessment approaches, and key lessons. Sustain Sci 2(2):265–275

    Article  Google Scholar 

  • Gouache D, Le Bris X, Bogard M, Deudon O, Pagé C, Gate P (2012) Evaluating agronomic adaptation options to increasing heat stress under climate change during wheat grain filling in France. Eur J Agron 39:62–70. doi:10.1016/j.eja.2012.01.009

    Article  Google Scholar 

  • Hochman Z, Van Rees H, Carberry PS, Hunt JR, McCown RL, Gartmann A, Holzworth D et al (2009) Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet ® helps farmers monitor and manage crops in a variable climate. Crop Pasture Sci 60(11):1057

    Article  Google Scholar 

  • Howden SM, Soussana J-F, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Natl Acad Sci USA 104(50):19691–19696. doi:10.1073/pnas.0701890104

    Article  CAS  Google Scholar 

  • Iglesias A, Garrote L, Quiroga S, Moneo M (2011) A regional comparison of the effects of climate change on agricultural crops in Europe. Clim Change 112(1):29–46. doi:10.1007/s10584-011-0338-8

    Article  Google Scholar 

  • IPPC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M et al (eds) Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA, p 996

  • Knox J-W, Hurford A, Hargreaves L, Wall E (2012) Climate change risk assessment for the agriculture sector. Technical report. Department for Environment, Food and Rural Affairs (DEFRA), UK, p 252

  • Lançon J, Wery J, Rapidel B, Angokaye M, Gérardeaux E, Gaborel C, Ballo D et al (2007) An improved methodology for integrated crop management systems. Agron Sustain Dev 27(2):101–110. doi:10.1051/agro

    Article  Google Scholar 

  • Lavalle C, Micale F, Houston TD, Camia A, Hiederer R, Lazar C, Conte C et al (2009) Climate change in Europe. 3. Impact on agriculture and forestry. A review (Reprinted). Agron Sustain Dev 29(3):433–446

    Article  Google Scholar 

  • Le Bellec F, Rajaud A, Ozier-Lafontaine H, Bockstaller C, Malezieux E (2012) Evidence for farmers’ active involvement in co-designing citrus cropping systems using an improved participatory method. Agron Sustain Dev 32(3):703–714. doi:10.1007/s13593-011-0070-9

    Article  Google Scholar 

  • Le Gal P-Y, Dugué P, Faure G, Novak S (2011) How does research address the design of innovative agricultural production systems at the farm level? A review. Agric Syst 104(9):714–728. doi:10.1016/j.agsy.2011.07.007

    Article  Google Scholar 

  • Lobell DB, Sibley A, Ivan Ortiz-Monasterio J (2012) Extreme heat effects on wheat senescence in India. Nat Clim Change 2(3):186–189

    Article  Google Scholar 

  • Loyce C, Wery J (2006) Les outils des agronomes pour l’évaluation et la conception de systèmes de culture. L’agronomie aujourd’hui. Quae, Paris, pp 77–95

  • MacRae R, Hill S, Henning J (1990) Policies, programs and regulations to support the transition to sustainable agriculture in Canada. Am J Altern Agric 5(02):76. doi:10.1017/S0889189300003325

    Article  Google Scholar 

  • Martin G, Felten B, Duru M (2011) Forage rummy: a game to support the participatory design of adapted livestock systems. Environ Model Softw 26(12):1442–1453. doi:10.1016/j.envsoft.2011.08.013

    Article  Google Scholar 

  • Martin G, Martin-Clouaire R, Duru M (2012) Farming system design to feed the changing world. A review. Agron Sustain Dev. doi:10.1007/s13593-011-0075-4

    Google Scholar 

  • Meinke H, Howden SM, Struik PC, Nelson R, Rodriguez D, Chapman SC (2009) Adaptation science for agriculture and natural resource management—urgency and theoretical basis. Curr Opin Environ Sustain 1(1):69–76. doi:10.1016/j.cosust.2009.07.007

    Article  Google Scholar 

  • Mínguez MI, Ruiz-Ramos M, Díaz-Ambrona CH, Quemada M, Sau F (2007) First-order impacts on winter and summer crops assessed with various high-resolution climate models in the Iberian Peninsula. Clim Change 81(S1):343–355. doi:10.1007/s10584-006-9223-2

    Article  Google Scholar 

  • Nelson R, Kokic P, Crimp S, Martin P, Meinke H, Howden SM, De Voil P et al (2010) The vulnerability of Australian rural communities to climate variability and change: Part II—Integrating impacts with adaptive capacity. Environ Sci Policy 13(1):18–27. doi:10.1016/j.envsci.2009.09.007

    Article  Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16(4):239–262. doi:10.1016/S1161-0301(02)00004-7

    Article  Google Scholar 

  • Pagé C, Terray L (2011) Nouvelles projections climatiques à échelle fine sur la France pour le 21ème siècle: les scénarii SCRATCH2010. Toulouse, p 25

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101(27):9971–9975. doi:10.1073/pnas.0403720101

    Article  CAS  Google Scholar 

  • Rosenzweig C, Tubiello FN (2007) Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig Adapt Strat Glob Change 12(5):855–873. doi:10.1007/s11027-007-9103-8

    Article  Google Scholar 

  • Sadok W, Angevin F, Bergez J-EE, Bockstaller C, Colomb B, Guichard L, Reau R et al (2009) MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron Sustain Dev 29(3):447–461. doi:10.1051/agro/2009006

    Article  Google Scholar 

  • Sauquet E, Dupeyrat A, Hendrickx F, Perrin C, Samie R, Vidal JP (2010) Climate and water management: uncertainties on water resources for the Garonne river basin in 2030? Technical report. Cemagref, EDF, France, p 157

  • Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Rep 1:66. doi:10.1038/srep00066

    CAS  Google Scholar 

  • Senthilkumar K, Bergez J, Leenhardt D (2012) Will climate change impact farmers’ maize earliness choice? A modeling approach applied to south-western France. In: Seppelt DBR, Voinov AA, Lange S (eds) International congress on environmental modelling and software managing resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany

  • Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Glob Environ Change 16(3):282–292. doi:10.1016/j.gloenvcha.2006.03.008

    Article  Google Scholar 

  • Tan C, Drury C, Gaynor J, Welacky T, Reynolds W (2002) Effect of tillage and water table control on evapotranspiration, surface runoff, tile drainage and soil water content under maize on a clay loam soil. Agric Water Manag 54(3):173–188. doi:10.1016/S0378-3774(01)00178-0

    Article  Google Scholar 

  • Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci USA 104(50):19686–19690. doi:10.1073/pnas.0701728104

    Article  CAS  Google Scholar 

  • Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Eur J Agron 7(1–3):235–250. doi:10.1016/S1161-0301(97)00039-7

    Article  Google Scholar 

  • Vidal J, Martin E, Franchisteguy L, Habets F, Soubeyroux J-M, Blanchard M, Baillon M (2010) Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrol Earth Syst Sci 14:459–478

    Article  Google Scholar 

  • Yang L, Peng S (2011) Agronomic avenues to maximize the benefits of rising atmospheric carbon dioxide concentrations in Asian irrigated rice systems. In: Araus JL, Slafer GA (eds) Crop stress management and global climate change. CABI Clima, pp 37–46

Download references

Acknowledgments

The authors gratefully acknowledge the funding from UMT-Eau, a joint research and development unit (INRA, Arvalis-institut du végétal and CETIOM) working on tools and methods for better agricultural quantitative water management. We would like to thank J.-E. Bergez, G. Martin, and O. Thérond for their helpful comments on the methodology and on the manuscript. The authors are grateful to V. Fuzeau for LPIS data analysis. We would like to give special thanks to all involved farmers. We also thank J. Kendzior for her editorial work in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magali Willaume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willaume, M., Rollin, A. & Casagrande, M. Farmers in southwestern France think that their arable cropping systems are already adapted to face climate change. Reg Environ Change 14, 333–345 (2014). https://doi.org/10.1007/s10113-013-0496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-013-0496-5

Keywords

Navigation