Skip to main content
Log in

Formulas for precisely and efficiently estimating the bias and variance of the length measurements

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Error analysis in length measurements is an important problem in geographic information system and cartographic operations. The distance between two random points—i.e., the length of a random line segment—may be viewed as a nonlinear mapping of the coordinates of the two points. In real-world applications, an unbiased length statistic may be expected in high-precision contexts, but the variance of the unbiased statistic is of concern in assessing the quality. This paper suggesting the use of a k-order bias correction formula and a nonlinear error propagation approach to the distance equation provides a useful way to describe the length of a line. The study shows that the bias is determined by the relative precision of the random line segment, and that the use of the higher-order bias correction is only needed for short-distance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Biljecki F, Heuvelink GB, Ledoux H, Stoter J (2015) Propagation of positional error in 3D GIS: estimation of the solar irradiation of building roofs. Int J Geogr Inf Sci 29(12):2269–2294

    Article  Google Scholar 

  • Box M (1971) Bias in nonlinear estimation. J R Stat Soc Ser B (Methodological) 33(2):171–201

    Google Scholar 

  • Chen W, Qin H (2012) New method for single epoch, single frequency land vehicle attitude determination using low-end GPS receiver. GPS Solut 16(3):329–338

    Article  Google Scholar 

  • Cook R, Tsai C-L, Wei B (1986) Bias in nonlinear regression. Biometrika 73(3):615–623

    Article  Google Scholar 

  • Fischer MM, Nijkamp P (1992) Geographic information systems and spatial analysis. Ann Reg Sci 26(1):3–17

    Article  Google Scholar 

  • Goodchild MF (1999) Measurement-based GIS. In: Shi WZ, Goodchild MF, Fisher PF (eds) Proceedings of the International Symposium on Spatial Data Quality ‘99. Hong Kong Polytechnic University, Hong Kong, pp 1–9

    Google Scholar 

  • Goodchild MF (2004) A general framework for error analysis in measurement-based GIS. J Geogr Syst 6(4):323–324

    Article  Google Scholar 

  • Goodchild MF, Hunter GJ (1997) A simple positional accuracy measure for linear features. Int J Geogr Inf Sci 11(3):299–306

    Article  Google Scholar 

  • Heki K, Takahashi Y, Kondo T (1989) The baseline length changes of circumpacific VLBI networks and their bearing on global tectonics. IEEE Trans Instrum Meas 38(2):680–683

    Article  Google Scholar 

  • Heo J, Woo Kim J, Sang Park J, Sohn H-G (2008) New line accuracy assessment methodology using nonlinear least-squares estimation. J Surv Eng 134(1):13–20

    Article  Google Scholar 

  • Jeudy LMA (1988) First and second moments of non-linear least-squares estimators application to explicit least-square adjustments. Bull Geod 62(2):113–124

    Article  Google Scholar 

  • Kobayashi T, Miller HJ, Othman W (2011) Analytical methods for error propagation in planar space–time prisms. J Geogr Syst 13(4):327–354

    Article  Google Scholar 

  • Lawford GJ, Gordon I (2010) The effect of offset correlation on positional accuracy estimation for linear features. Int J Geogr Inf Sci 24(1):129–140

    Article  Google Scholar 

  • Leick A (2004) GPS Satellite Surveying. Wiley, Hoboken

    Google Scholar 

  • Leung Y, Ma J-H, Goodchild MF (2004a) A general framework for error analysis in measurement-based GIS part 1: the basic measurement-error model and related concepts. J Geogr Syst 6(4):325–354

    Article  Google Scholar 

  • Leung Y, Ma J-H, Goodchild MF (2004b) A general framework for error analysis in measurement-based GIS part 2: the algebra-based probability model for point-in-polygon analysis. J Geogr Syst 6(4):355–379

    Article  Google Scholar 

  • Leung Y, Ma J-H, Goodchild MF (2004c) A general framework for error analysis in measurement-based GIS part 3: error analysis in intersections and overlays. J Geogr Syst 6(4):381–402

    Article  Google Scholar 

  • Leung Y, Ma J-H, Goodchild MF (2004d) A general framework for error analysis in measurement-based GIS part 4: error analysis in length and area measurements. J Geogr Syst 6(4):403–428

    Article  Google Scholar 

  • Mathai AM, Provost SB (1992) Quadratic Forms in Random Variables: Theory and Applications. M. Dekker, New York

    Google Scholar 

  • Mitrovica J, Davis J, Shapiro I (1993) Constraining proposed combinations of ice history and Earth rheology using VLBI determined baseline length rates in North America. Geophys Res Lett 20(21):2387–2390

    Article  Google Scholar 

  • Mozas AT, Ariza FJ (2010) Methodology for positional quality control in cartography using linear features. Cartogr J 47(4):371–378

    Article  Google Scholar 

  • Nie Z, Wang Z, Ou Z, Ji S (2015) On the effect of linearization and approximation of nonlinear baseline length constraint for ambiguity resolution. Acta Geod Cartogr Sin 44(2):168–173

    Google Scholar 

  • Ranacher P, Brunauer R, Trutschnig W, Van der Spek S, Reich S (2016) Why GPS makes distances bigger than they are. Int J Geogr Inf Sci 30(2):316–333

    Article  Google Scholar 

  • Seber GAF (2008) A Matrix Handbook for Statisticians. Wiley-Interscience, Hoboken

    Google Scholar 

  • Spiegel MR (1968) Mathematical handbook of formulas and tables. Schaum’s outline series, McGraw-Hill, New York

    Google Scholar 

  • Stanislawski LV, Dewitt BA, Shrestha RL (1996) Estimating positional accuracy of data layers within a GIS through error propagation. Photogram Eng Rem Sens 62(4):429–433

    Google Scholar 

  • Teunissen PJG (1990) Nonlinear inversion of geodetic and geophysical data: Diagnosing nonlinearity. In: Brunner FK, Rizos C (eds) Developments in Four-Dimensional Geodesy. Springer, Berlin Heidelberg, pp 241–264

    Chapter  Google Scholar 

  • Teunissen PJG (2010) Integer last-squares theory for the GNSS compass. J Geodesy 84(7):433–447

    Article  Google Scholar 

  • Wheeler DC, Calder CA (2007) An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. J Geogr Syst 9(2):145–166

    Article  Google Scholar 

  • Xue S, Yang Y (2014) Gauss–Jacobi combinatorial adjustment and its modification. Surv Rev 46(337):298–304

    Article  Google Scholar 

  • Xue S, Yang Y, Dang Y (2014) A closed-form of Newton method for solving over-determined pseudo-distance equations. J Geodesy 88(5):441–448

    Article  Google Scholar 

  • Xue J, Leung Y, Ma J-H (2015) High-order Taylor series expansion methods for error propagation in geographic information systems. J Geogr Syst 17(2):187–206

    Article  Google Scholar 

  • Xue S, Dang Y, Liu J, Mi J, Dong C, Cheng Y, Wang X, Wan J (2016) Bias estimation and correction for triangle-based surface area calculations. Int J Geogr Inf Sci 30(11):2155–2170

    Article  Google Scholar 

  • Zandbergen PA (2008) Positional accuracy of spatial data: non-normal distributions and a critique of the national standard for spatial data accuracy. Trans GIS 12(1):103–130

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express many thanks to Prof. M.M. Fischer for his helpful comments. This work is supported by National Science Foundation of China (41020144004, 41104018, 41674014, and 41474011). National Key R&D Program (2016YFB0501700, B1503, 2009AA121405 and 2013AA122501) and GFZX0301040308-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Xue.

Appendix: k-Order approximation about the expectation of the length statistic

Appendix: k-Order approximation about the expectation of the length statistic

1.1 De-correlation on the variance matrix of the positional error

To simplify the discussion, the correlation between \( \varepsilon_{i} \) and \( \varepsilon_{j} \) of \( {\varvec{\upvarepsilon}} \) for \( i \ne j \) is reduced by applying the spectral decomposition as follows (Seber 2008)

$$ {\varvec{\Lambda}} = {\mathbf{S}}^{\text{T}} {\mathbf{DS}}: = {\text{diag(}}\lambda_{ 1} ,\lambda_{ 2} ,\ldots ,\lambda_{m} ) $$
(37)

where S is the \( (m,m) \) orthogonal matrix, and \( \lambda_{ 1} \ge \lambda_{ 2} \ge ,\ldots ,\ge \lambda_{m} \) are the eigenvalues. That is, for the random variable \( {\varvec{\varepsilon}}^{\prime} \) given by the coordinate transformation

$$ \left\{ \begin{aligned} {\varvec{\varepsilon}}^{\prime} & = {\mathbf{S}}^{\text{T}} {\varvec{\upvarepsilon}} \\ {{\tilde{\varvec{\Delta}^{\prime}}}} & = {\mathbf{S}}^{\text{T}} {\tilde{\varvec{\Delta }}} \\ \end{aligned} \right. $$
(38)

we have

$$ \left\{ \begin{aligned} & E({\varvec{\varepsilon}}^{\prime}) = {\mathbf{0}} \\ & E({\varvec{\varepsilon}}^{\prime}{\varvec{\varepsilon}}^{\prime\text{T}} ) = {\varvec{\Lambda}}. \\ \end{aligned} \right. $$
(39)

Particularly for the normal distribution (11), \( \text{cov} (\varepsilon^{\prime}_{i} ,\varepsilon^{\prime}_{j} ) = 0 \) can result in

$$ E\left( {\varepsilon_{i}^{{{\prime }k_{1} }} \varepsilon_{j}^{{{\prime }k_{2} }} } \right) = E\left( {\varepsilon_{i}^{{{\prime }k_{1} }} } \right)E\left( {\varepsilon_{j}^{{{\prime }k_{2} }} } \right) $$
(40)

for arbitrary k 1, \( k_{2} \in {\mathbb{Z}} \).

Because the length statistic given by Eq. (7) is invariant under the transformation given by Eq. (38), we have

$$ d({\varvec{\Delta}}) = d({\tilde{\varvec{\Delta }}}^{{\prime }} ) = \sqrt {\tilde{d}^{2} + 2{\tilde{\varvec{\Delta }}}^{{{\prime }T}} {\varvec{\upvarepsilon}}^{{\prime }} + {\varvec{\upvarepsilon}}^{{{\prime }T}} {\varvec{\upvarepsilon}}^{{\prime }} } . $$
(41)

As indicated by this equation, there is no loss of generality in assuming that the random vector components are expressed in the principal axis frame. That is, the covariance matrix is diagonal with nonzero diagonal elements.

1.2 k-Order Taylor appropriation of the length statistic

To simplify the notation in the following discussion, let

$$ \left\{ \begin{aligned} z_{1} & = 2{\tilde{\varvec{\Delta }}}^{{\prime {\text{T}}}} {\varvec{\upvarepsilon}}^{\prime } = 2\tilde{\Delta }_{1}^{{\prime }} \varepsilon_{1}^{{\prime }} + 2\tilde{\Delta }_{2}^{{\prime }} \varepsilon_{2}^{{\prime }} + \cdots + 2\tilde{\Delta }_{m}^{{\prime }} \varepsilon_{m}^{{\prime }} \\ z_{2} & = {\varvec{\upvarepsilon}}^{{\prime {\text{T}}}} {\varvec{\upvarepsilon}}^{{\prime }} = \varepsilon_{1}^{{{\prime }2}} + \varepsilon_{2}^{{{\prime }2}} + \cdots + \varepsilon_{m}^{{{\prime }2}} \\ \end{aligned} \right. $$
(42)

then Eq. (41) reads as

$$ d({\varvec{\Delta^{\prime}}}) = \sqrt {\tilde{d}^{2} + z_{1} + z_{2} } = \tilde{d}\sqrt {1 + \frac{{z_{1} + z_{2} }}{{\tilde{d}^{2} }}} . $$
(43)

Applying the binomial series

$$ \sqrt {1 + x} = 1 + \frac{1}{2}x - \frac{1}{2 \cdot 4}x^{2} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6}x^{3} - \cdots $$
(44)

[cf. Spiegel (1968, p. 110)] to Eq. (43) about \( z_{1} = 0, z_{2} = 0 \), we have (Spiegel 1968)

$$ d({\varvec{\Delta^{\prime}}}) = \tilde{d} + \sum\limits_{i = 1}^{k} {\frac{{( - 1)^{i - 1} }}{{\tilde{d}^{2i - 1} }}\frac{(2i - 3)!!}{( 2i)!!}\left( {z_{1} + z_{2} } \right)^{i} } + s^{k} (\theta {\mathbf{z}}) $$
(45)

where \( {\mathbf{z}} = \left[ {z_{1} , z_{2} } \right]^{\text{T}} \), \( (2i - 3)!! = (2i - 3)(2i - 5) \ldots 1 \), \( ( 2i)!! = ( 2i)( 2i - 2) \ldots 2 \), \( - 1!! = 1 \), and

$$ s^{k} (\theta {\mathbf{z}}) = \frac{{( - 1)^{k + 1} (2k - 3)!!}}{{2\left( {k + 1} \right)!!d^{2k + 1} (\theta {\mathbf{z}})}} $$
(46)

with \( \theta \in \left( {0,1} \right) \).

Ignoring the Eq. (46), we can obtain the k-order Taylor expansion of Eq. (43) as follows:

$$ d({\varvec{\Delta^{\prime}}}) \approx \tilde{d} + \sum\limits_{i = 1}^{k} {\frac{{( - 1)^{i - 1} }}{{\tilde{d}^{2i - 1} }}\frac{(2i - 3)!!}{( 2i)!!}\left( {z_{1} + z_{2} } \right)^{i} } . $$
(47)

The approximation given by Eq. (47) is a good basis for estimating the bias in the length statistic of the random line segment.

1.3 k-Order approximation about the expectation of the length statistic

By the approximation (47), the expectation given by Eq. (10) can be approximated as follows:

$$ \begin{aligned} M & \approx M_{k} : = \tilde{d} + \sum\limits_{i = 1}^{k} {\frac{{( - 1)^{i - 1} }}{{\tilde{d}^{2i - 1} }}\frac{(2i - 3)!!}{( 2i)!!}E\left( {z_{1} + z_{2} } \right)^{i} } \\ & = \tilde{d} + \sum\limits_{i = 1}^{k} {\frac{{( - 1)^{i - 1} }}{{\tilde{d}^{2i - 1} }}\frac{(2i - 3)!!}{( 2i)!!}\left( {E(z_{1}^{i} ) + \sum\limits_{{1 \le k_{1} \le i - 1, k_{1} + k_{2} = i}} {C_{i}^{{k_{1} }} E(z_{1}^{{k_{1} }} z_{2}^{{k_{2} }} )} + E(z_{2}^{i} )} \right)} \\ \end{aligned} $$
(48)

where \( E(z_{1}^{i} ) \), \( E(z_{1}^{{k_{1} }} z_{2}^{{k_{2} }} ) \) and \( E(z_{2}^{i} ) \) are the expectations of \( z_{1}^{i} \), \( z_{1}^{{k_{1} }} z_{2}^{{k_{2} }} \) and \( z_{2}^{i} \), respectively, \( C_{i}^{{k_{1} }} = {{i\,!} \mathord{\left/ {\vphantom {{i!} {\left[ {k_{1} !(i - k_{1} )!} \right]}}} \right. \kern-0pt} {\left[ {k_{1} !(i - k_{1} )!} \right]}} \) is the number of all combinations.

To calculate \( E(z_{2}^{i} ) \) in Eq. (48), by connecting this problem with the Chi-square distribution, following Xue et al. (2015)

$$ E(\varepsilon_{j}^{{{\prime }2i}} ) = (2i - 1)(2i - 3) \cdots 1 \cdot \lambda_{j}^{i} = (2i - 1)!!\lambda_{j}^{i} \quad j = 1,2, \ldots, m $$
(49)

we have

$$ \begin{aligned} E\left( {z_{2}^{i} } \right) & = E\left( {\varepsilon_{1}^{{{\prime }2}} + \varepsilon_{2}^{{{\prime }2}} + \cdots + \varepsilon_{m}^{{{\prime }2}} } \right)^{i} \\ & = \left\{ {E\left[ {(\varepsilon_{1}^{{{\prime }2}} + \varepsilon_{2}^{{{\prime }2}} + \cdots + \varepsilon_{m}^{{{\prime }2}} )^{i} } \right] + \sum\limits_{i = 1}^{m} {\left[ {E(\varepsilon_{i}^{{{\prime }2}} )} \right]^{i} } } \right\} - \sum\limits_{i = 1}^{m} {\left[ {E(\varepsilon_{i}^{{{\prime }2}} )} \right]^{i} } \\ & = \left\{ {\left[ {E(\varepsilon_{1}^{{{\prime }2}} ) + E(\varepsilon_{2}^{{{\prime }2}} ) + \cdots + E(\varepsilon_{n}^{{{\prime }2}} )} \right]^{i} + \sum\limits_{i = 1}^{m} {E(\varepsilon_{i}^{{{\prime }2i}} )} } \right\} - \sum\limits_{i = 1}^{m} {\left[ {E(\varepsilon_{i}^{{{\prime }2}} )} \right]^{i} } \\ & = \left[ {(2i - 1)!! - 1} \right]tr({\mathbf{D}}^{i} ) + \left[ {tr({\mathbf{D}})} \right]^{i} \\ \end{aligned} $$
(50)

where \( tr( \cdot ) \) is the trace of the matrix.

Before calculating \( E(z_{1}^{i} ) \) and \( E(z_{1}^{{k_{1} }} z_{2}^{{k_{2} }} ) \) in Eq. (48), the variance of z 1 must be computed first as follows

$$ \sigma_{{z_{1} }}^{2} : = E(z_{1}^{2} ) = 4{{\tilde{\varvec{\Delta}^{\prime}}}}^{\text{T}} {\varvec{\Lambda}} \tilde{\varvec\Delta^{\prime}} = 4{\varvec{\Delta}}^{\text{T}} {\mathbf{S}}{\varvec{\Lambda}}{\mathbf{S}}^{\text{T}} {\varvec{\Delta}} = 4\tilde{d}^{2} {{\tilde{\bf e}{\bf D}\tilde{\bf e}}}^{\text{T}} = 4\tilde{d}^{2} \sigma_{{{\tilde{\mathbf{e}}}}}^{2} $$
(51)

where \( \sigma_{{{\tilde{\mathbf{e}}}}}^{2} \) is the directional variance. With regard to Eqs. (50) and (51), we then get

$$ E\left( {z_{1}^{i} } \right) = \left\{ {\begin{array}{*{20}l} 0 \hfill & {{\text{for }}i = 2s + 1} \hfill \\ {(i - 1)!!2^{i} \tilde{d}^{i} \sigma_{{{\tilde{\mathbf{e}}}}}^{i} } \hfill & {{\text{for }}i = 2s} \hfill \\ \end{array} } \right. $$
(52)

and

$$ \begin{aligned} E\left( {z_{1}^{{k_{1} }} z_{2}^{{k_{2} }} } \right) & = E\left[ {\left( {\Delta_{1}^{{\prime }} \varepsilon_{1}^{{\prime }} + \Delta_{2}^{{\prime }} \varepsilon_{2}^{{\prime }} + \Delta_{3}^{{\prime }} \varepsilon_{3}^{{\prime }} } \right)^{{k_{1} }} \left( {\varepsilon_{1}^{{{\prime }2}} + \varepsilon_{2}^{{{\prime }2}} + \varepsilon_{3}^{{{\prime }2}} } \right)^{{k_{2} }} } \right] \\ & = E\left[ {\sum\limits_{\begin{subarray}{l} 1 \le r, s \le k_{1}, r + s \le k_{1} \\ 1 \le t, q \le k_{2}, t + q \le k_{2} \end{subarray} } {C_{{k_{1} }}^{r} \left( {\Delta_{1}^{{{\prime }r}} \varepsilon_{1}^{{{\prime }r}} } \right)C_{{k_{1} - r}}^{s} \left( {\Delta_{2}^{{{\prime }s}} \varepsilon_{2}^{{{\prime }s}} } \right)\left( {\Delta_{3}^{{{\prime }k_{1} - r - s}} \varepsilon_{3}^{{{\prime }k_{1} - r - s}} } \right)C_{{k_{2} }}^{t} \left( {\varepsilon_{1}^{{{\prime }2t}} } \right)C_{{k_{2} - t}}^{q} \left( {\varepsilon_{2}^{{{\prime }2q}} } \right)\left( {\varepsilon_{3}^{{{\prime }2(k_{2} - t - q)}} } \right)} } \right] \\ & = \sum\limits_{\begin{subarray}{l} 1 \le r, s \le k_{1}, r + s \le k_{1} \\ 1 \le t, q \le k_{2}, t + q \le k_{2} \end{subarray} } {C_{{k_{1} }}^{r} \left( {\Delta_{1}^{{{\prime }r}} E(\varepsilon_{1}^{{{\prime }r}} )} \right)C_{{k_{1} - r}}^{s} \left( {\Delta_{2}^{{{\prime }s}} E(\varepsilon_{2}^{{{\prime }s}} )} \right)\left( {\Delta_{3}^{{{\prime }k_{1} - r - s}} E(\varepsilon_{3}^{{{\prime }k_{1} - r - s}} )} \right)C_{{k_{2} }}^{t} \left( {E(\varepsilon_{1}^{{{\prime }2t}} )} \right)C_{{k_{2} - t}}^{q} \left( {E(\varepsilon_{2}^{{{\prime }2q}} )} \right)\left( {E(\varepsilon_{3}^{{{\prime }2(k_{2} - t - q)}} )} \right)} \\ & = E\left( {\Delta_{1}^{{\prime }} \varepsilon_{1}^{{\prime }} + \Delta_{2}^{{\prime }} \varepsilon_{2}^{{\prime }} + \Delta_{3}^{{\prime }} \varepsilon_{3}^{{\prime }} } \right)^{{k_{1} }} E\left( {\varepsilon_{1}^{{{\prime }2}} + \varepsilon_{2}^{{{\prime }2}} + \varepsilon_{3}^{{{\prime }2}} } \right)^{{k_{2} }} \\ & = E(z_{1}^{{k_{1} }} )E(z_{2}^{{k_{2} }} ) \\ \end{aligned} $$
(53)

which can be further simplified by applying Eqs. (50) and (52) to (53). That is,

$$ E\left( {z_{1}^{{k_{1} }} z_{2}^{{k_{2} }} } \right) = \left\{ {\begin{array}{*{20}l} 0 \hfill & {{\text{for }}k_{1} = 2s + 1} \hfill \\ {\left\{ {(k_{1} - 1)!!2^{{k_{1} }} \tilde{d}^{{k_{1} }} \sigma _{{{{\tilde{\bf e}}}}}^{{k_{1} }} } \right\}\left\{ {\left[ {(2k_{2} - 1)!! - 1} \right]tr\left( {{\mathbf{D}}^{{k_{2} }} } \right) + \left[ {tr\left( {\mathbf{D}} \right)} \right]^{{k_{2} }} } \right\}} \hfill & {{\text{for }}k_{1} = 2s.} \hfill \\ \end{array} } \right. $$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Yang, Y. & Dang, Y. Formulas for precisely and efficiently estimating the bias and variance of the length measurements. J Geogr Syst 18, 399–415 (2016). https://doi.org/10.1007/s10109-016-0235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-016-0235-9

Keywords

JEL classification:

Navigation