Skip to main content
Log in

Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Since before the inception of work by Okabe, the intermingling of spatial autocorrelation (i.e., local distance and configuration) and distance decay (i.e., global distance) effects has been suspected in spatial interaction data. This convolution was first treated conceptually because technology and methodology did not exist at the time to easily or fully address spatial autocorrelation effects within spatial interaction model specifications. Today, however, sufficient computer power coupled with eigenfunction-based spatial filtering offers a means for accommodating spatial autocorrelation effects within a spatial interaction model for modest-sized problems. In keeping with Okabe’s more recent efforts to dissemination spatial analysis tools, this paper summarizes how to implement the methodology utilized to analyze a particular empirical flows dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. This distinction is similar to the conceptualization of diffusion models, where the hierarchical component refers to leaps across space, whereas the contagious component refers to local distance-decay spread.

  2. Deviance equals −2LN(likelihood function value) for the model. Meanwhile, the mean and the variance are equal for a conventional Poisson model. Overdispersion (also known as extra-Poisson variation) occurs when the variance exceeds the mean. Overdispersion in a Poisson model has similar consequences to heterogeneity in a normal probability model.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Griffith.

Appendices

Appendix A

Percentage of variance accounted for (i.e., redundant information) by spatial autocorrelation

$$\begin{aligned}{\text{MC}} &= \frac{n}{{{\mathbf{1}}^\prime {\mathbf{C1}}}}\frac{{\mathbf{z}^\prime {\mathbf{Cz}}}}{n - 1},\quad{\text{where}}\,\mathbf{z}\,{\text{is}}\,{\text{a}}\,z {\text{-score}} \\\mathbf{z} &= a + b{\mathbf{Cz}} + e \\b &= \frac{{\mathbf{z}^\prime {\mathbf{Cz}}}}{{\mathbf{z}^\prime{\mathbf{C}}^{2} \mathbf{z}}} = \frac{{s_{z} }}{{s_{\text{Cz}} }}r =\frac{\sqrt 1 }{{s_{\text{Cz}} }}r \\\frac{\text{MC}}{{{\text{MC}}_{ \max } }}\frac{{n\lambda_{1}}}{{{\mathbf{1}}^\prime {\mathbf{C1}}}}\frac{{{\mathbf{1}}^\prime{\mathbf{C1}}}}{n}\frac{n - 1}{{{\mathbf{z}}^\prime {\mathbf{C}}^{2}\mathbf{z}}} &= \frac{1}{{\sqrt {\frac{{{\mathbf{z}}^\prime{\mathbf{C}}({\mathbf{I}} - {\mathbf{11}}^\prime/n){\mathbf{Cz}}}}{n - 1}} }}r \\\left( {\frac{\text{MC}}{{{\text{MC}}_{ \max } }}} \right)^{2}\lambda_{1}^{2} \frac{{(n - 1)^{2} }}{{\left( {{\mathbf{z}}^\prime{\mathbf{C}}^{2} \mathbf{z}} \right)^{2} }} &= \frac{n -1}{{{\mathbf{z}}^\prime {\mathbf{C}}({\mathbf{I}} -{\mathbf{11}}^\prime /n){\mathbf{Cz}}}}r^{2} \\r^{2} &= \left( {\frac{\text{MC}}{{{\text{MC}}_{ \max } }}}\right)^{2} \lambda_{1}^{2} (n - 1)\frac{{{\mathbf{z}}^\prime{\mathbf{C}}({\mathbf{I}} - {\mathbf{11}}^\prime/n){\mathbf{Cz}}}}{{\left( {{\mathbf{z}}^\prime {\mathbf{C}}^{2}\mathbf{z}} \right)^{2} }} \\ \end{aligned}$$

1.1 A.1 The absence of spatial autocorrelation

z iid:

$$\begin{aligned}{\mathbf{z}}^\prime {\mathbf{C}}^{2} {\mathbf{z}} &={\mathbf{1}}^\prime {\mathbf{C1}} \hfill \\{\mathbf{z}}^\prime {\mathbf{Cz}} &\approx 0 \hfill \\r^{2} &\approx \frac{{({\mathbf{1}}^\prime {\mathbf{C1}})^{2}}}{{n^{2} (n - 1){\mathbf{1}}^\prime {\mathbf{C}}^{2} {\mathbf{1}}}}\approx 0\end{aligned}$$

1.2 A.2 Some limiting cases: regular square (rook, queen) and hexagonal tessellations

$$ \begin{aligned} &{\mathbf{C1}} \to k{\mathbf{1}} \\&{\mathbf{Cz}} \to k{\mathbf{z}}\,({\text{but}}\,{\text{with}}\,{\text{some}}\,{\text{permuting}})\\ &{\text{MC}}_{ \max } \to 1 \\ &r^{2} = \left( {\frac{\text{MC}}{1}} \right)^{2} k^{2} (n -1)\frac{{k^{2} (n - 1)- \tfrac{{0^{2} }}{n}}}{{[k^{2} (n - 1)^{2} ]^{2} }} \\ &\quad= {\text{MC}}^{2} \\ \end{aligned} $$

Appendix B

Table 3.

Table 3 Frequencies of eigenvectors appearing in the Kronecker products

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, D.A. Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows. J Geogr Syst 11, 117–140 (2009). https://doi.org/10.1007/s10109-009-0082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-009-0082-z

Keywords

JEL Classification

Navigation