Skip to main content
Log in

Modeling combinatorial disjunctive constraints via junction trees

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We introduce techniques to build small ideal mixed-integer programming (MIP) formulations of combinatorial disjunctive constraints (CDCs) via the independent branching scheme. We present a novel pairwise IB-representable class of CDCs, CDCs admitting junction trees, and provide a combinatorial procedure to build MIP formulations for those constraints. Generalized special ordered sets (\({\text {SOS}}k\)) can be modeled by CDCs admitting junction trees and we also obtain MIP formulations of \({\text {SOS}}k\). Furthermore, we provide a novel ideal extended formulation of any combinatorial disjunctive constraints with fewer auxiliary binary variables with an application in planar obstacle avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The number of auxiliary binary variables is logarithmic in \(|{\varvec{\mathcal {S}}}|\).

  2. The upper bounds of the size of minimum biclique cover of a conflict graph with \(n := |\bigcup _{S \in {\varvec{\mathcal {S}}}} S|\) vertices are the vertex cover number and \(n - \lfloor \log _2(n)\rfloor + 1\) [35]; Neither quantity is upper bounded by \(|{\varvec{\mathcal {S}}}|\).

  3. We only consider the case when \(k=2\) and we use minimal infeasible set directly without defining a hypergraph as in [20].

  4. We select \(\mathcal {T}_1\) to be the subtree with smaller set indices, i.e. i in \(S^i\), in the collection of index sets \({\varvec{\mathcal {S}}}\) in Line 17 of Algorithm 1.

  5. Since all the sets in \({\varvec{\mathcal {S}}}''\) are disjointed with each other, the bicliques in \(\textit{bc}_{{\text {dict}}}[\textit{level}]\) of Algorithm 1 can be merged into one and there are only \(\lceil \log _2(|{\varvec{\mathcal {S}}}|)\rceil \) levels.

References

  1. Adams, W.P., Henry, S.M.: Base-2 expansions for linearizing products of functions of discrete variables. Oper. Res. 60(6), 1477–1490 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs. Discret. Appl. Math. 86(2–3), 125–144 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balas, E.: Machine sequencing via disjunctive graphs: an implicit enumeration algorithm. Oper. Res. 17(6), 941–957 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balas, E.: Disjunctive programming: cutting planes from logical conditions. In: Nonlinear Programming, pp. 279–312. Elsevier, New York (1975)

    Chapter  MATH  Google Scholar 

  5. Balas, E.: Disjunctive programming. Ann. Discret. Math. 5, 3–51 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discret. Appl. Math. 89(1–3), 3–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beale, E.M.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. OR 69(447–454), 99 (1970)

    MATH  Google Scholar 

  8. Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43(1), 1–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biegler, L.T., Grossmann, I.E., Westerberg, A.W.: Systematic Methods for Chemical Process Design. Prentice Hall, Old Tappan, NJ (United States) (1997)

    MATH  Google Scholar 

  10. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Cham (2008)

    Book  MATH  Google Scholar 

  11. de Caen, D., Gregory, D.A., Pullman, N.J.: The boolean rank of zero-one matrices. In: Proceedings of the Third Caribbean Conference on Combinatorics and Computing, Barbados, pp. 169–173 (1981)

  12. Chalermsook, P., Heydrich, S., Holm, E., Karrenbauer, A.: Nearly tight approximability results for minimum biclique cover and partition. In: European Symposium on Algorithms, pp. 235–246. Springer (2014)

  13. Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)

    Article  MATH  Google Scholar 

  14. Dai, H., Izatt, G., Tedrake, R.: Global inverse kinematics via mixed-integer convex optimization. Int. J. Robot. Res. 38(12–13), 1420–1441 (2019)

    Article  MATH  Google Scholar 

  15. De Berg, M.T., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Cham (2000)

    Book  MATH  Google Scholar 

  16. Deits, R., Tedrake, R.: Footstep planning on uneven terrain with mixed-integer convex optimization. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 279–286. IEEE (2014)

  17. Deits, R., Tedrake, R.: Efficient mixed-integer planning for uavs in cluttered environments. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 42–49. IEEE (2015)

  18. Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Courier Dover Publications, Mineola, New York (2017)

    MATH  Google Scholar 

  19. Guo, K., Huynh, T., Macchia, M.: The biclique covering number of grids. Electron. J. Comb. (2019). https://doi.org/10.37236/8316

    Article  MathSciNet  MATH  Google Scholar 

  20. Huchette, J., Vielma, J.P.: A combinatorial approach for small and strong formulations of disjunctive constraints. Math. Oper. Res. 44(3), 793–820 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huchette, J., Vielma, J.P.: Nonconvex piecewise linear functions: advanced formulations and simple modeling tools. Oper. Res. (2022). https://doi.org/10.1287/opre.2019.1973

    Article  MATH  Google Scholar 

  22. Jeroslow, R.G., Lowe, J.K.: Modelling with integer variables. In: Mathematical Programming at Oberwolfach II, pp. 167–184. Springer, Cham (1984)

    Chapter  MATH  Google Scholar 

  23. Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)

    Article  CAS  MATH  Google Scholar 

  24. Kis, T., Horváth, M.: Ideal, non-extended formulations for disjunctive constraints admitting a network representation. Math. Program. (2021). https://doi.org/10.1007/s10107-021-01652-z

    Article  MATH  Google Scholar 

  25. Kravitz, D.: Two comments on minimum spanning trees. Bull. ICA 49, 7–10 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T., Marion, P., Tedrake, R.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robots 40(3), 429–455 (2016)

    Article  Google Scholar 

  27. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams. In: 2012 IEEE International Conference on Robotics and Automation, pp. 477–483. IEEE (2012)

  28. Minkowski, H.: Allgemeine lehrsatze uber die konvexen polyeder. Nachr. Ges. Wiss. Gott. Math. Phys. KL 1897, 198–219 (1897)

    MATH  Google Scholar 

  29. Muldoon, F.M., Adams, W.P., Sherali, H.D.: Ideal representations of lexicographic orderings and base-2 expansions of integer variables. Oper. Res. Lett. 41(1), 32–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Müller, H.: On edge perfectness and classes of bipartite graphs. Discret. Math. 149(1–3), 159–187 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Orlin, J.: Contentment in graph theory: covering graphs with cliques. In: Indagationes Mathematicae (Proceedings), pp. 406–424. Elsevier, New York (1977)

    Google Scholar 

  32. Pinto, J.M., Grossmann, I.E.: A continuous time mixed integer linear programming model for short term scheduling of multistage batch plants. Ind. Eng. Chem. Res. 34(9), 3037–3051 (1995)

    Article  CAS  MATH  Google Scholar 

  33. Prodan, I., Stoican, F., Olaru, S., Niculescu, S.I.: Mixed-Integer Representations in Control Design: Mathematical Foundations and Applications. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  34. Raman, R., Grossmann, I.E.: Modelling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

    Article  CAS  MATH  Google Scholar 

  35. Tuza, Z.: Covering of graphs by complete bipartite subgraphs; complexity of 0–1 matrices. Combinatorica 4(1), 111–116 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vielma, J.P.: Mixed integer linear programming formulation techniques. Siam Rev. 57(1), 3–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vielma, J.P.: Embedding formulations and complexity for unions of polyhedra. Manag. Sci. 64(10), 4721–4734 (2018)

    Article  MATH  Google Scholar 

  38. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. Inf. J. Comput. 20(3), 438–450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128(1), 49–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weyl, H.: Elementare theorie der konvexen polyeder. Comment. Math. Helv. 7(1), 290–306 (1934)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank reviewers and Hamidreza Validi for helpful and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bochuan Lyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of Lemma 5

Proof

Since k is a finite positive integer, then there exists an integer \(b'\) such that \(k \le 2^{b'} + 1\). Thus, the total number of the bicliques is no larger than

$$\begin{aligned} \sum _{i=0}^{b-1} \min \left\{ 2^i, \Bigg \lceil \frac{k-1+2^{b-i-1}}{2^{b-i}} \Bigg \rceil \right\}&\le \sum _{i=0}^{b-1} \Bigg \lceil \frac{k-1+2^{b-i-1}}{2^{b-i}} \Bigg \rceil \end{aligned}$$
(22a)
$$\begin{aligned}&= \sum _{i=1}^{b} \Bigg \lceil \frac{k-1+2^{i-1}}{2^{i}} \Bigg \rceil \end{aligned}$$
(22b)
$$\begin{aligned}&= b + \sum _{i=1}^{b} \Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil \end{aligned}$$
(22c)
$$\begin{aligned}&\le b + \sum _{i=1}^{b'} \Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil \end{aligned}$$
(22d)

We switch the value of i to \(b-i\) in (22b). In order to obtain (22d), we prove it in two cases. If \(b' \ge b\), since \(\Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil \ge \Bigg \lceil -\frac{1}{2} \Bigg \rceil \) for all positive integer i, it is trivial to show the correctness. If \(b'< b\),

$$\begin{aligned} \sum _{i=1}^{b} \Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil&= \sum _{i=1}^{b'} \Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil + \sum _{i=b'+1}^{b} \Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil \end{aligned}$$
(23a)
$$\begin{aligned}&\le \sum _{i=1}^{b'} \Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil + \sum _{i=b'+1}^{b} \Bigg \lceil \frac{k-1}{2^{b'+1}} - \frac{1}{2} \Bigg \rceil \end{aligned}$$
(23b)
$$\begin{aligned}&= \sum _{i=1}^{b'} \Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil , \end{aligned}$$
(23c)

where (23c) is obtained by the fact that \(k\le 2^{b'} +1\).

Since \(k \le 2^{b'} + 1\), then we can find \(a_j \in \{0, 1\}\) for \(j \in \{0, \ldots , b'-1\}\) such that \(k-2 = \sum _{j=0}^{b'-1} a_j 2^j\). Then,

$$\begin{aligned} \sum _{i=1}^{b'} \Bigg \lceil \frac{k-1-2^{i-1}}{2^{i}} \Bigg \rceil&= \sum _{i=1}^{b'} \Bigg \lceil \frac{\left( \sum _{j=0}^{b'-1} a_j 2^j\right) + 1 -2^{i-1}}{2^{i}} \Bigg \rceil \end{aligned}$$
(24a)
$$\begin{aligned}&= \sum _{i=1}^{b'} \Bigg \lceil \left( \sum _{j=0}^{b'-1} a_j 2^{j-i}\right) + 2^{-i} -\frac{1}{2} \Bigg \rceil \end{aligned}$$
(24b)
$$\begin{aligned}&= \sum _{i=1}^{b'-1} \sum _{j=i}^{b'-1} a_j 2^{j-i}+ \sum _{i=1}^{b'} \Bigg \lceil \left( \sum _{j=0}^{i-1} a_j 2^{j-i}\right) + 2^{-i} -\frac{1}{2} \Bigg \rceil \end{aligned}$$
(24c)
$$\begin{aligned}&= \sum _{i=1}^{b'-1} \sum _{j=i}^{b'-1} a_j 2^{j-i} + \sum _{i=1}^{b'}a_{i-1}. \end{aligned}$$
(24d)

We take out all the integer parts to get (24c). For (24d), we can show the correctness by proving that \(\Bigg \lceil \left( \sum _{j=0}^{i-1} a_j 2^{j-i}\right) + 2^{-i} -\frac{1}{2} \Bigg \rceil = a_{i-1}\). We prove it by cases. If \(a_{i-1} = 0\),

$$\begin{aligned} -\frac{1}{2} \le \left( \sum _{j=0}^{i-1} a_j 2^{j-i}\right) + 2^{-i} -\frac{1}{2} \le \sum _{j=0}^{i-2} 2^{j-i} + 2^{-i} - \frac{1}{2} = 0. \end{aligned}$$

If \(a_{i-1} = 1\), then

$$\begin{aligned} 1 \ge \left( \sum _{j=0}^{i-1} a_j 2^{j-i}\right) + 2^{-i} -\frac{1}{2} \ge \frac{1}{2} + 2^{-i} - \frac{1}{2} = 2^{-i} > 0. \end{aligned}$$

Then, by reordering the summation,

$$\begin{aligned} \sum _{i=1}^{b'-1} \sum _{j=i}^{b'-1} a_j 2^{j-i} + \sum _{i=1}^{b'}a_{i-1}&= \sum _{j=1}^{b'-1} a_j \sum _{i=1}^{j} 2^{j-i} + \sum _{j=0}^{b'-1}a_{j} \end{aligned}$$
(25a)
$$\begin{aligned}&= a_0 + \sum _{j=1}^{b'-1}\left( a_j + a_j \sum _{i=0}^{j-1} 2^i\right) \end{aligned}$$
(25b)
$$\begin{aligned}&= a_0 + \sum _{j=1}^{b'-1}a_j 2^j \end{aligned}$$
(25c)
$$\begin{aligned}&= k - 2. \end{aligned}$$
(25d)

\(\square \)

B Proofs of Propositions 15 and 16

Proof of Proposition 15

Given \(N > k \ge 2\), we have

$$\begin{aligned} \lceil \log _2(\lceil N / k \rceil - 1) \rceil + 3k&= \lceil \log _2(\lceil (N - k) / k \rceil ) \rceil + 3k \end{aligned}$$
(26a)
$$\begin{aligned}&\ge \lceil \log _2((N - k) / k) \rceil + 3k \end{aligned}$$
(26b)
$$\begin{aligned}&= \lceil \log _2(N - k) - \log _2 (k) \rceil + 3k \end{aligned}$$
(26c)
$$\begin{aligned}&\ge \lceil \log _2(N - k)\rceil - \lceil \log _2 (k) \rceil + 3k \end{aligned}$$
(26d)
$$\begin{aligned}&\ge \lceil \log _2(N - k + 1)\rceil - 1 - \lceil \log _2 (k) \rceil + 3k \end{aligned}$$
(26e)
$$\begin{aligned}&\ge \lceil \log _2(N - k + 1)\rceil - 1 + 2k \end{aligned}$$
(26f)
$$\begin{aligned}&> \lceil \log _2(N - k + 1) \rceil + k - 2 , \end{aligned}$$
(26g)

where (26d) is obtained by the fact that \(\lceil x - y \rceil \ge \lceil x - \lceil y \rceil \rceil = \lceil x \rceil - \lceil y \rceil \) for any xy and (26e) is because \(\lceil \log _2(x)\rceil \ge \lceil \log _2(x + 1)\rceil - 1\) for any \(x \ge 1\).                  \(\square \)

Proof of Proposition 16 Furthermore, we suppose that \(k > C \lceil \log _2(N) \rceil \) for some \(C > \frac{1}{2}\). Then,

$$\begin{aligned} \frac{\lceil \log _2(N - k + 1) \rceil + k - 2}{\lceil \log _2(\lceil N / k \rceil - 1) \rceil + 3k}&\le \frac{\lceil \log _2(N) \rceil + k}{3 k} \end{aligned}$$
(27a)
$$\begin{aligned}&< \frac{\frac{k}{C} + k}{3 k} \end{aligned}$$
(27b)
$$\begin{aligned}&= \frac{1 + C}{3 C} \end{aligned}$$
(27c)
$$\begin{aligned}&< 1. \end{aligned}$$
(27d)

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, B., Hicks, I.V. & Huchette, J. Modeling combinatorial disjunctive constraints via junction trees. Math. Program. 204, 385–413 (2024). https://doi.org/10.1007/s10107-023-01955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-023-01955-3

Keywords

Mathematics Subject Classification

Navigation