Skip to main content
Log in

Sample average approximation with heavier tails I: non-asymptotic bounds with weak assumptions and stochastic constraints

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We derive new and improved non-asymptotic deviation inequalities for the sample average approximation (SAA) of an optimization problem. Our results give strong error probability bounds that are “sub-Gaussian” even when the randomness of the problem is fairly heavy tailed. Additionally, we obtain good (often optimal) dependence on the sample size and geometrical parameters of the problem. Finally, we allow for random constraints on the SAA and unbounded feasible sets, which also do not seem to have been considered before in the non-asymptotic literature. Our proofs combine different ideas of potential independent interest: an adaptation of Talagrand’s “generic chaining” bound for sub-Gaussian processes; “localization” ideas from the Statistical Learning literature; and the use of standard conditions in Optimization (metric regularity, Slater-type conditions) to control fluctuations of the feasible set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Another typical light-tail condition is to assume an sub-exponential tail.

  2. The constants appearing in our Theorem 1 are not the same as in [12], but can be easily obtained via the same method.

  3. When \({\mathcal {I}}\ne \emptyset \), we assume without too much loss in generality in Assumption 5 that \(\epsilon \in (0,\vartheta ^*]\) with \(\vartheta ^*\) as in Assumption 4. For instance, in case f is locally strongly convex on a neighbourhood U of \(X^*\) and Assumption 4 holds, the existence of a \(x\in X_{-\eta _*}^{*,\vartheta _*}\cap U\) is a mild requirement.

  4. Indeed, if \(x_{\delta }\in X_{\delta }\) is the metric projection of \(x^*_\delta \) onto X for some \(\delta >0\), by (16) and Assumption 3, we have \(f^*-f_{\delta }^*\le f(x_\delta )-f(x_\delta ^*)\le \sigma {\mathsf {d}}(x^*_\delta ,X)\le \sigma {\mathfrak {c}}\delta \).

  5. Using \(\sqrt{\epsilon R\delta }\le 2\epsilon +2R\delta \) and \(\epsilon ,\delta \le 1\).

References

  1. Artstein, Z., Wets, R.J.B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal. 2, 1–17 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Atlason, J., Epelman, M.A., Henderson, S.G.: Call center staffing with simulation and cutting plane methods. Ann. Oper. Res. 127(1), 333–358 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Banholzer, D., Fliege, J., Werner, R.: On rates of convergence for sample average approximations in the almost sure sense and in mean. Math. Program. (2019). https://doi.org/10.1007/s10107-019-01400-4

    Article  MATH  Google Scholar 

  4. Bartlett, P., Bousquet, O., Mendelson, S.: Local Rademacher complexities. Ann. Stat. 33, 1497–1537 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Bartlett, P., Mendelson, S.: Empirical minimization. Probab. Theory Relat. Fields 135(3), 311–334 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Barlett, P.L., Mendelson, S., Neeman, J.: \(\ell _1\)-regularized linear regression: persistence and oracle inequalities. Probab. Theory Relat. Fields 154, 193–224 (2012)

    MATH  Google Scholar 

  7. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Bickel, P.J., Ritov, Y., Tsybakov, A.B.: Simultaneous analysis of the Lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  10. Burke, J.V., Deng, S.: Weak sharp minima revisited, part II: application to linear regularity and error bounds. Math. Program. 104, 235–261 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control. Optim. 31, 1340–1359 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Dirksen, S.: Tail bounds via generic chaining. Electron. J. Probab. 20, 1–29 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Dupacovà, J., Wets, R.J.B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Stat. 16(4), 1517–1549 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Ermoliev, Y.M., Norkin, V.I.: Sample average approximation for compound stochastic optimization problems. SIAM J. Optim. 23(4), 2231–2263 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Guigues, V., Juditsky, A., Nemirovski, A.: Non-asymptotic confidence bounds for the optimal value of a stochastic program. Optim. Methods Softw. 32(5), 1033–1058 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)

    MathSciNet  Google Scholar 

  17. Homem-de-Mello, T., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manag. Sci. 19, 56–85 (2014)

    MathSciNet  Google Scholar 

  18. Iusem, A., Jofré, A., Thompson, P.: Incremental constraint projection methods for monotone stochastic variational inequalities. Math. Oper. Res. 44(1), 236–263 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Kanková, V., Houda, M.: Thin and heavy tails in stochastic programming. Kybernetika 51(3), 433–456 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Kanková, V., Omelchenko, V.: Empirical estimates in stochastic programs with probability and second order stochastic dominance constraints. Acta Math. Univ. Comenianae LXXXIV 2, 267–281 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Koltchinskii, V., Panchenko, D.: Complexities of convex combinations and bounding the generalization error in classification. Ann. Stat. 33, 1455–1496 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Koltchinskii, V.: Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Stat. 34(6), 2593–2656 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Kim, S., Pasupathy, R., Henderson, S.G.: A guide to sample average approximation. In: Michael, Fu. (ed.) Handbook of Simulation Optimization, International Series in Operations Research & Management Science, vol. 216, pp. 207–243. Springer, New York (2015)

    Google Scholar 

  24. King, A.J., Rockafellar, R.T.: Asymptotic theory for solutions in statistical estimation and stochastic programming. Math. Oper. Res. 18, 148–162 (1993)

    MathSciNet  MATH  Google Scholar 

  25. King, A.J., Wets, R.J.B.: Epi-consistency of convex stochastic programs. Stoch. Stoch. Rep. 34, 83–92 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Lojasiewicz, M.S.: Sur le problème de la division. Stud. Math. 18, 87–136 (1959)

    MATH  Google Scholar 

  28. Mendelson, S.: Learning without concentration. J. ACM 62(3), 1–25 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Mendelson, S.: Local vs. global parameters—breaking the Gaussian complexity barrier. Ann. Stat. 45(5), 1835–1862 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Oliveira, R.I., Thompson, P.: Sample average approximation with heavier tails II: localization in stochastic convex optimization and persistence results for the lasso (2020)

  31. Panchenko, D.: Symmetrization approach to concentration inequalities for empirical processes. Ann. Probab. 31, 2068–2081 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Pang, J.-S.: Error bounds in mathematical programming. Math. Program. Ser. B 79(1), 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Pflug, G.C.: Asymptotic stochastic programs. Math. Oper. Res. 20, 769–789 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Pflug, G.C.: Stochastic programs and statistical data. Ann. Oper. Res. 85, 59–78 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Pflug, G.C.: Stochastic optimization and statistical inference. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in OR & MS, vol. 10, pp. 427–482. Elsevier, Amsterdam (2003)

    Google Scholar 

  36. Robinson, S.M.: An application of error bounds for convex programming in a linear space. SIAM J. Control 13, 271–273 (1975)

    MathSciNet  MATH  Google Scholar 

  37. Rockafellar, R.T., Urysaev, S.: Optimization of conditional value-at-risk. J. Risk 2(3), 493–517 (2000)

    Google Scholar 

  38. Royset, J.O.: Optimality functions in stochastic programming. Math. Program. Ser. A 135, 293–321 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in OR & MS, vol. 10, pp. 483–554. Elsevier, Amsterdam (2003)

    Google Scholar 

  40. Shapiro, A.: Asymptotic properties of statistical estimators in stochastic programming. Ann. Stat. 17, 841–858 (1989)

    MathSciNet  MATH  Google Scholar 

  41. Shapiro, A.: Asymptotic analysis of stochastic programs. Ann. Oper. Res. 30, 169–186 (1991)

    MathSciNet  MATH  Google Scholar 

  42. Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in OR & MS, vol. 10, pp. 353–425. Elsevier, Amsterdam (2003)

    Google Scholar 

  43. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2009)

    MATH  Google Scholar 

  44. Shapiro, A., Homem-de-Mello, T.: On the rate of convergence of optimal solutions of Monte Carlo approximations of stochastic programs. SIAM J. Optim. 11(1), 70–86 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Shapiro, A., Nemirovski, A.: On the complexity of stochastic programming problems. In: Jeyakumar, V., Rubinov, A. (eds.) Continuous Optimization: Current Trends and Modern Applications, vol. 99, pp. 111–146. Springer, Boston (2005)

    Google Scholar 

  46. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes. Springer, Berlin (2014)

    MATH  Google Scholar 

  47. Talagrand, M.: Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22, 28–76 (1994)

    MathSciNet  MATH  Google Scholar 

  48. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  49. Vogel, S.: Stability results for stochastic programming problems. Optimization 19(2), 269–288 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Vogel, S.: Confidence Sets and Convergence of Random Functions (2008) preprint at https://www.tu-ilmenau.de/fileadmin/media/orsto/vogel/Publikationen/Vogel-Grecksch-Geb-korr-1.pdf

  51. Vogel, S.: Universal confidence sets for solutions of optimization problems. SIAM J. Optim. 19(3), 1467–1488 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Wand, W., Ahmed, S.: Sample average approximation of expected value constrained stochastic programs. Oper. Res. Lett. 36, 515–519 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Thompson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Roberto I. Oliveira is supported by CNPq grants 432310/2018-5 (Universal) and 304475/2019-0 (Produtividade em Pesquisa), and FAPERJ grants 202.668/2019 (Cientista do Nosso Estado) and 290.024/2021 (Edital Inteligência Artificial)

Appendix

Appendix

Proof of Lemma 1

The second statement in the Lemma is a direct consequence of the first. Therefore, we will only prove the first statement.

Assume that \(Z'_1,\dots ,Z'_n\) are independent copies of the \(Z_1,\dots ,Z_n\). Also let \(Z=(Z_1,\dots ,Z_n)^T\). What we want to prove is that, for any \(t\ge 0\),

$$\begin{aligned} \mathbf{Want:}\;{\mathbb {P}}\left\{ {\mathbb {E}}\left[ \sum _{k=1}^N (Z_k - Z'_k)\mid Z\right] \ge \sqrt{2(1+t)\,\sum _{k=1}^N{\mathbb {E}}[(Z_k-Z'_k)^2\mid Z]} \right\} \le e^{-t}. \end{aligned}$$

By [31, Corollary 1], it suffices to prove that, for any \(t\ge 0\),

$$\begin{aligned} \mathbf{Sufficient:}\;{\mathbb {P}}\left\{ \sum _{k=1}^N (Z_k - Z'_k)\ge \sqrt{2t\,\sum _{k=1}^N(Z_k-Z'_k)^2} \right\} \le e^{-t}. \end{aligned}$$

We will prove that the above inequality holds almost surely conditionally on values \(|Z_k-Z'_k|=a_k\), \(1\le k\le N\). Notice that, conditionally on these values,

$$\begin{aligned} Z_k - Z'_k = u_k\,a_k \end{aligned}$$

where the \(u_k\) are i.i.d. unbiased random signs. So what we must show is that:

$$\begin{aligned} \forall t\ge 0\,:\, {\mathbb {P}}\left\{ \sum _{k=1}^N u_ia_i\ge \sqrt{2t \sum _{k=1}^Na_k^2}\right\} \le e^{-t}, \end{aligned}$$

for any choice of \(a_k\), \(1\le k\le N\). This follows easily from the standard inequalities:

$$\begin{aligned} \forall \theta >0\,:\,{\mathbb {E}}[e^{\theta \sum _{k=1}^N u_ia_i}] = \prod _{k=1}^N\cosh (\theta a_k)\le e^{\frac{\theta ^2\sum _{k=1}^Na_k^2}{2}}, \end{aligned}$$

and Bernstein’s trick:

$$\begin{aligned} {\mathbb {P}}\left\{ \sum _{k=1}^N u_ia_i\ge \sqrt{2t \sum _{k=1}^Na_k^2}\right\} \le \inf _{\theta >0}{\mathbb {E}}[e^{\theta \sum _{k=1}^N u_ia_i}]e^{-\theta \sqrt{2t \sum _{k=1}^Na_k^2}}\le e^{-t}. \end{aligned}$$

\(\square \)

Proof of Proposition 1

We will need the following Lemma.

Lemma 5

There exists a constant \({\mathbf{c}}_{{\mathsf {bdg}}}\) such that, for all \(p\ge 2\) and all i.i.d. random variables \(Z_1,\dots ,Z_N\in L^p\) with \({\mathbb {E}}[Z_i]=0\),

$$\begin{aligned} {\left\| \,\frac{Z_1 + \dots + Z_N}{N}\, \right\| }_{p}\le {\mathbf{c}}_{{\mathsf {bdg}}}\sqrt{\frac{p}{N}}\,{\left\| \,Z_1\, \right\| }_{p}, \end{aligned}$$

Proof of the Lemma

By the Burkholder–Davis–Gundy inequality and the subaditivity of the \(L^{p/2}\) norm:

$$\begin{aligned} {\left\| \,Z_1 + \dots + Z_N\, \right\| }_{p}\le {\mathbf{c}}_{{\mathsf {bdg}}}\sqrt{p}\,{\left\| \,Z^2 _1+\dots +Z^2_N\, \right\| }_{p/2}^{1/2}\le {\mathbf{c}}_{{\mathsf {bdg}}}\sqrt{p\sum _{i=1}^N{\left\| \,Z^2_i\, \right\| }_{p/2}} \end{aligned}$$

and the proof finishes when we note \({\left\| \,Z^2_i\, \right\| }_{p/2} ={\left\| \,Z_1\, \right\| }_{p}^2\) for each index i.\(\square \)

Now note that the random variables

$$\begin{aligned} H_k:=\frac{h(\xi _k) - {\mathbf {E}}h(\cdot )}{\sigma ^2}\,\,(1\le k\le N) \end{aligned}$$

are i.i.d. and satisfy \({\mathbb {E}}[H_k]=0\), \({\left\| \,H_k\, \right\| }_{p}\le \kappa _p\). Markov’s inequality implies:

$$\begin{aligned} {\mathbb {P}}\left\{ {\widehat{{\mathbf {E}}}}h(\cdot )> 2\sigma ^2\right\} \le {\mathbb {P}}\left\{ \frac{1}{N}\sum _{k=1}^NH_k>1\right\} \le {\left\| \,\frac{1}{N}\sum _{k=1}^NH_k\, \right\| }_{p}^p. \end{aligned}$$

Now use Lemma 5 to bound the RHS.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R.I., Thompson, P. Sample average approximation with heavier tails I: non-asymptotic bounds with weak assumptions and stochastic constraints. Math. Program. 199, 1–48 (2023). https://doi.org/10.1007/s10107-022-01810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01810-x

Mathematics Subject Classification

Navigation