Skip to main content
Log in

A framework for generalized Benders’ decomposition and its application to multilevel optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We describe a framework for reformulating and solving optimization problems that generalizes the well-known framework originally introduced by Benders. We discuss details of the application of the procedures to several classes of optimization problems that fall under the umbrella of multilevel/multistage mixed integer linear optimization problems. The application of this abstract framework to this broad class of problems provides new insights and a broader interpretation of the core ideas, especially as they relate to duality and the value functions of optimization problems that arise in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We use the term “stage” in describing the decision epochs of an MMILP, rather than the alternative “level” used in the multilevel optimization literature because of its broader connotation and connection to stochastic optimization.

  2. When the value function is not real-valued everywhere, we have to show that there exists a real-valued function that coincides with the value function whenever the value function is real-valued and is itself real-valued everywhere else, but is still a feasible dual function (see Wolsey [64]).

References

  1. Aardal, K., van Hoesel, C.: Polyhedral techniques in combinatorial optimization I: theory. Stat. Neerl. 50, 3–26 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bachem, A., Schrader, R.: Minimal equalities and subadditive duality. SIAM J. Control Optim. 18(4), 437–443 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balas, E.: Disjunctive programming. In: Hammer, P.L., Johnson, E.L., Korte, B.H. (eds.) Annals of Discrete Mathematics 5: Discrete Optimization, pp. 3–51. Elsevier, North Holland (1979)

    Google Scholar 

  4. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Birkhäuser verlag, Basel (1983)

    MATH  Google Scholar 

  5. Bard, J., Moore, J.: An algorithm for the discrete bilevel programming problem. Naval Res. Logist. 39(3), 419–435 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baringo, L., Conejo, A.: Transmission and wind power investment. IEEE Trans. Power Syst. 27(2), 885–893 (2012)

    Article  Google Scholar 

  7. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013). https://doi.org/10.1017/S0962492913000032

    Article  MathSciNet  MATH  Google Scholar 

  8. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  10. Blair, C.: A closed-form representation of mixed-integer program value functions. Math. Program. 71(2), 127–136 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blair, C., Jeroslow, R.: The value function of a mixed integer program: I. Discrete Math. 19(2), 121–138 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blair, C., Jeroslow, R.: The value function of a mixed integer program: II. Discrete Math. 25(1), 7–19 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blair, C., Jeroslow, R.: The value function of an integer program. Math. Program. 23(1), 237–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blair, C., Jeroslow, R.: Constructive characterizations of the value-function of a mixed-integer program I. Discrete Appl. Math. 9(3), 217–233 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bolusani, S., Coniglio, S., Ralphs, T., Tahernejad, S.: A unified framework for multistage mixed integer linear optimization. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization: Advances and Next Challenges, Chapter 18, pp. 513–560. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-52119-6

    Chapter  MATH  Google Scholar 

  16. Bracken, J., McGill, J.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21(1), 37–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.: Bilevel knapsack with interdiction constraints. INFORMS J. Comput. 28(2), 319–333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caramia, M., Mari, R.: Enhanced exact algorithms for discrete bilevel linear problems. Optim. Lett. 9(7), 1447–1468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming. Oper. Res. 54(4), 756–766 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math. Program. 112, 3–44 (2008). https://doi.org/10.1007/s10107-006-0086-0

    Article  MathSciNet  MATH  Google Scholar 

  21. DeNegre, S.: Interdiction and discrete bilevel linear programming. PhD, Lehigh University. http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf (2011)

  22. DeNegre, S., Ralphs, T.: A branch-and-cut algorithm for bilevel integer programming. In: Proceedings of the Eleventh INFORMS Computing Society Meeting, pp. 65–78. https://doi.org/10.1007/978-0-387-88843-9_4. http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf (2009)

  23. Eaves, B., Zangwill, W.: Generalized cutting plane algorithms. SIAM J. Control 9, 529–542 (1971)

    Article  MathSciNet  Google Scholar 

  24. Faísca, N., Dua, V., Rustem, B., Saraiva, P., Pistikopoulos, E.: Parametric global optimisation for bilevel programming. J. Global Optim. 38, 609–623 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization. Math. Program. 172, 77–103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Interdiction games and monotonicity, with application to knapsack problems. INFORMS J. Comput. 31(2), 390–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Garcés, L., Conejo, A., García-Bertrand, R., Romero, R.: A bilevel approach to transmission expansion planning within a market environment. IEEE Trans. Power Syst. 24(3), 1513–1522 (2009)

    Article  Google Scholar 

  29. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972). https://doi.org/10.1007/BF00934810

    Article  MathSciNet  MATH  Google Scholar 

  30. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, second corrected Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  31. Güzelsoy, M.: Dual methods in mixed integer linear programming. PhD, Lehigh University. http://coral.ie.lehigh.edu/~ted/files/papers/MenalGuzelsoyDissertation09.pdf (2009)

  32. Güzelsoy, M., Ralphs, T.: Duality for mixed-integer linear programs. Int. J. Oper. Res. 4, 118–137 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Hassanzadeh, A.: Two-stage stochastic mixed integer optimization. PhD, Lehigh (2015)

  34. Hassanzadeh, A., Ralphs, T.: A generalized Benders’ algorithm for two-stage stochastic program with mixed integer recourse. Tech. rep., COR@L Laboratory Technical Report 14T-005, Lehigh University. http://coral.ie.lehigh.edu/~ted/files/papers/SMILPGenBenders14.pdf (2014)

  35. Hassanzadeh, A., Ralphs, T.: On the value function of a mixed integer linear optimization problem and an algorithm for its construction. Tech. rep., COR@L Laboratory Technical Report 14T-004, Lehigh University. http://coral.ie.lehigh.edu/~ted/files/papers/MILPValueFunction14.pdf (2014)

  36. Hemmati, M., Smith, J.: A mixed integer bilevel programming approach for a competitive set covering problem. Tech. rep., Clemson University (2016)

  37. Hooker, J., Ottosson, G.: Logic-based Benders decomposition. Math. Program. 96(1), 33–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jeroslow, R.: Cutting plane theory: algebraic methods. Discrete Math. 23, 121–150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jeroslow, R.: Minimal inequalities. Math. Program. 17, 1–15 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jeroslow, R.: The polynomial hierarchy and a simple model for competitive analysis. Math. Program. 32(2), 146–164 (1985). https://doi.org/10.1007/BF01586088

    Article  MathSciNet  MATH  Google Scholar 

  41. Johnson, E.: Cyclic groups, cutting planes, and shortest paths. In: Hu, T., Robinson, S. (eds.) Mathematical Programming, pp. 185–211. Academic Press, New York (1973)

    Chapter  Google Scholar 

  42. Johnson, E.: On the group problem for mixed integer programming. Math. Program. Study 2, 137–179 (1974)

    Article  MathSciNet  Google Scholar 

  43. Kleinert, T., Labbè, M., Plein, F., Schmidt, M.: Technical note—there’s no free lunch: on the hardness of choosing a correct big-M in bilevel optimization. Oper. Res. 68(6), 1716–1721 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kleinert, T., Labbè, M., Ljubić, I., Schmidt, M.: A survey on mixed integer programming techniques in bilevel optimization. http://www.optimization-online.org/DB_HTML/2021/01/8187.html (2021)

  45. Köppe, M., Queyranne, M., Ryan, C.T.: Parametric integer programming algorithm for bilevel mixed integer programs. J. Optim. Theory Appl. 146(1), 137–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lozano, L., Smith, J.: A value-function-based exact approach for the bilevel mixed-integer programming problem. Oper. Res. 65(3), 768–786 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Moore, J., Bard, J.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  49. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The Benders decomposition algorithm: a literature review. Eur. J. Oper. Res. 259(3), 801–817 (2017). https://doi.org/10.1016/j.ejor.2016.12.005

    Article  MathSciNet  MATH  Google Scholar 

  50. Saharidis, G., Ierapetritou, M.: Resolution method for mixed integer bi-level linear problems based on decomposition technique. J. Global Optim. 44(1), 29–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sahinidis, N., Grossmann, I.: Convergence properties of generalized Benders decomposition. Comput. Chem. Eng. 15(7), 481–491 (1991). https://doi.org/10.1016/0098-1354(91)85027-R

    Article  Google Scholar 

  52. Sen, S., Sherali, H.: Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming. Math. Program. 106(2), 203–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shapiro, A.: Monte Carlo sampling methods. Handb. Oper. Res. Manag. Sci. 10, 353–425 (2003)

    MathSciNet  Google Scholar 

  54. Stockmeyer, L.: The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1–22 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sutner, K.: Undergraduate complexity theory. http://www.cs.cmu.edu/~15455/pdf/lect-22.pdf (2021)

  56. Tahernejad, S., Ralphs, T.: Valid Inequalities for Mixed Integer Bilevel Optimization Problems. Tech. rep., COR@L Laboratory Report 20T-013, Lehigh University. http://coral.ie.lehigh.edu/~ted/files/papers/MibSCuts20 (2020)

  57. Tahernejad, S., Ralphs, T., DeNegre, S.: A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation. Math. Program. Comput. 12, 529–568 (2020). https://doi.org/10.1007/s12532-020-00183-6

    Article  MathSciNet  MATH  Google Scholar 

  58. Van Slyke, R., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vicente, L., Savard, G., Júdice, J.: Discrete linear bilevel programming problem. J. Optim. Theory Appl. 89(3), 597–614 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  60. Von Stackelberg, H.: Marktform und Gleichgewicht. Julius Springer, Berlin (1934)

    MATH  Google Scholar 

  61. Wang, L., Xu, P.: The watermelon algorithm for the bilevel integer linear programming problem. SIAM J. Optim. 27(3), 1403–1430 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wen, U., Yang, Y.: Algorithms for solving the mixed integer two-level linear programming problem. Comput. Oper. Res. 17(2), 133–142 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wolsey, L.: Integer programming duality: price functions and sensitivity analysis. Math. Program. 20, 173–195 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  65. Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. Comput. Oper. Res. 41, 309–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Yue, D., Gao, J., Zeng, B., You, F.: A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs. J. Global Optim. 73(1), 27–57 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zeng, B., An, Y.: Solving bilevel mixed integer program by reformulations and decomposition. Tech. rep., University of South Florida. http://www.optimization-online.org/DB_FILE/2014/07/4455.pdf (2014)

Download references

Acknowledgements

This research was made possible with support from National Science Foundation Grants CMMI-1435453, CMMI-0728011, and ACI-0102687, as well as Office of Naval Research Grant N000141912330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Bolusani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolusani, S., Ralphs, T.K. A framework for generalized Benders’ decomposition and its application to multilevel optimization. Math. Program. 196, 389–426 (2022). https://doi.org/10.1007/s10107-021-01763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-021-01763-7

Keywords

Mathematics Subject Classification

Navigation