Skip to main content
Log in

A tight approximation algorithm for the cluster vertex deletion problem

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We give the first 2-approximation algorithm for the cluster vertex deletion problem. This approximation factor is tight, since approximating the problem within any constant factor smaller than 2 is UGC-hard. Our algorithm combines previous approaches, based on the local ratio technique and the management of twins, with a novel construction of a “good” cost function on the vertices at distance at most 2 from any vertex of the input graph. As an additional contribution, we also study cluster vertex deletion from the polyhedral perspective, where we prove almost matching upper and lower bounds on how well linear programming relaxations can approximate the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We warn the reader that, in other papers, twins are usually called true twins, whereas two vertices which have the same set of neighbours are called false twins (note that false twins are not adjacent). Since we have no need of false twins in this paper, we have chosen to use twins in place of true twins.

  2. A fan is a graph obtained from a path by adding an apex vertex.

  3. The first inequality follows since \(|H|\leqslant \alpha (H)\cdot \omega (H)\), for every perfect graph H.

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Wiley, New York (2016)

    MATH  Google Scholar 

  3. Aprile, M.: Extended formulations for matroid polytopes through randomized protocols. arXiv preprintarXiv:2106.12453, (2021)

  4. Aprile, M., Castro, N., Ferreira, G., Piccini, J., Robledo, F., Romero, P.: Graph fragmentation problem: analysis and synthesis. Int. Trans. Oper. Res. 26(1), 41–53 (2019)

    Article  MathSciNet  Google Scholar 

  5. Aprile, M., Castro, N., Robledo, F., Romero, P.: Analysis and complexity of node-immunization under natural disasters. In: DRCN 2017-Design of Reliable Communication Networks; 13th International Conference, pages 1–8. VDE, (2017)

  6. Aprile, M., Drescher, M., Fiorini, S., Huynh, T.: A simple 7/3-approximation algorithm for feedback vertex set in tournaments. arXiv preprintarXiv:2008.08779, (2020)

  7. Aprile, M., Drescher, M., Fiorini, S., Huynh, T.: A tight approximation algorithm for the cluster vertex deletion problem. In: International Conference on Integer Programming and Combinatorial Optimization, pages 340–353. Springer, (2021)

  8. Aprile, M., Faenza, Y.: Extended formulations from communication protocols in output-efficient time. Math. Programm. 183(1), 41–59 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aprile, M. F., Faenza, Y., Fiorini, S., Huynh, T., Macchia, M.: Extension complexity of stable set polytopes of bipartite graphs. Lecture Notes in Computer Science book series (LNCS), 10520(CONF):75–87, (2017)

  10. Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approximates vertex cover within a factor \(2 - \epsilon \). Math. Oper. Res. 44(1), 147–172 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Blair, J.R., Peyton, B.: An introduction to chordal graphs and clique trees. In: Graph theory and sparse matrix computation, pp. 1–29. Springer, (1993)

  12. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Braun, G., Pokutta, S., Roy, A.: Strong reductions for extended formulations. Math. Program. 172(1–2), 591–620 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Braun, G., Pokutta, S., Zink, D.: Inapproximability of combinatorial problems via small LPs and SDPs. In: Proceedings of STOC 2015, pp. 107–116, New York, NY, USA. ACM (2015)

  15. Cai, M.-C., Deng, X., Zang, W.: An approximation algorithm for feedback vertex sets in tournaments. SIAM J. Comput. 30(6), 1993–2007 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, Y., Ke, Y., Otachi, Y., You, J.: Vertex deletion problems on chordal graphs. Theor. Comput. Sci. 745, 75–86 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chan, S.O., Lee, J.R., Raghavendra, P., Steurer, D.: Approximate constraint satisfaction requires large LP relaxations. J. ACM (JACM) 63(4), 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271. Springer, Berlin (2014)

    MATH  Google Scholar 

  19. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hitting 3-vertex paths. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 238–249. Springer, (2016)

  20. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hitting 3-vertex paths. Math. Program. 182(1–2, Ser. A), 355–367 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local search. J. ACM, 66(2):Art. 8, 23, (2019)

  22. Fomin, F.V., Le, T., Lokshtanov, D., Saurabh, S., Thomassé, S., Zehavi, M.: Subquadratic kernels for implicit 3-hitting set and 3-set packing problems. ACM Trans. Algorithms 15(1), 13:1-13:44 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Freund, A., Bar-Yehuda, R., Bendel, K.: Local ratio: a unified framework for approximation algorithms. ACM Comput. Surv. 36, 422–463 (2005)

    Google Scholar 

  24. Hosseinian, S., Butenko, S.: Polyhedral properties of the induced cluster subgraphs. Discrete Appl. Math. 297, 80–96 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jahanpour, E., Chen, X.: Analysis of complex network performance and heuristic node removal strategies. Commun. Nonlinear Sci. Numer. Simul. 18(12), 3458–3468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kothari, P.K., Meka, R., Raghavendra, P.: Approximating rectangles by juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In: Hatami, H, McKenzie, P., King, V. (eds), Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 590–603. ACM, (2017)

  28. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lokshtanov, D.: Personal communication

  30. Lokshtanov, D., Misra, P., Mukherjee, J., Panolan, F., Philip, G., Saurabh, S.: \(2\)-approximating feedback vertex set in tournaments. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1010–1018. SIAM, (2020)

  31. Mnich, M., Williams, V.V., Végh, L.A.: A 7/3-approximation for feedback vertex sets in tournaments. In: Sankowski, P., Zaroliagis, C.D. (eds), 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 67:1–67:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2016)

  32. Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture Notes for the MAPSP, pp. 1–25, (2013)

  33. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  34. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55(2), 221–232 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tiwary, H. R., Kouteckỳ, M., Kolman, P.: Extension complexity, MSO logic, and treewidth. Discrete Math. Theor. Computer Sci., 22, (2020)

  38. Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. CoRR, arXiv:1901.07609, (2019)

  39. Végh, L.A.: Personal communication

  40. You, J., Wang, J., Cao, Y.: Approximate association via dissociation. Discret. Appl. Math. 219, 202–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Daniel Lokshtanov for suggesting Lemma 4, which allowed us to simplify our algorithm and its proof. We also thank two anonymous referees for their helpful comments, which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper appeared as an extended abstract in the proceedings of IPCO 2021. See the end of Sect. 1 for a detailed comparison.

This project was supported by ERC Consolidator Grant 615640-ForEFront. Samuel Fiorini and Manuel Aprile are also supported by FNRS grant T008720F-35293308-BD-OCP. Tony Huynh is also supported by the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aprile, M., Drescher, M., Fiorini, S. et al. A tight approximation algorithm for the cluster vertex deletion problem. Math. Program. 197, 1069–1091 (2023). https://doi.org/10.1007/s10107-021-01744-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-021-01744-w

Keywords

Navigation