Skip to main content
Log in

Mathematical programs with complementarity constraints and a non-Lipschitz objective: optimality and approximation

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider a class of mathematical programs with complementarity constraints (MPCC) where the objective function involves a non-Lipschitz sparsity-inducing term. Due to the existence of the non-Lipschitz term, existing constraint qualifications for locally Lipschitz MPCC cannot ensure that necessary optimality conditions hold at a local minimizer. In this paper, we present necessary optimality conditions and MPCC-tailored qualifications for the non-Lipschitz MPCC. The proposed qualifications are related to the constraints and the non-Lipschitz term, which ensure that local minimizers satisfy these necessary optimality conditions. Moreover, we present an approximation method for solving the non-Lipschitz MPCC and establish its convergence. Finally, we use numerical examples of sparse solutions of linear complementarity problems and the second-best road pricing problem in transportation science to illustrate the effectiveness of our approximation method for solving the non-Lipschitz MPCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We check that all the results presented in the paper have evident valid counterparts in the presence of additional usual equality and inequality constraints. We omit the usual constraints of problem (1.3) for simplifying the analysis since all the essential difficulties are associated with the complementarity constraints and the non-Lipschitz term in the objective.

References

  1. Achtziger, W., Kanzow, C., Hoheisel, T.: On a relaxation method for mathematical programs with vanishing constraints. GAMM-Mitteilungen 35, 110–130 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Bian, W., Chen, X.: Linearly constrained non-Lipschitz optimization for image restoration. SIAM J. Imaging Sci. 8, 2294–2322 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios. Proc. Nat. Acad. Sci. 106, 12267–12272 (2009)

    MATH  Google Scholar 

  5. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Burdakov, O.P., Kanzow, C., Schwartz, A.: Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 26, 397–425 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Candès, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Červinka, M., Kanzow, C., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. 160, 353–377 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007)

    Google Scholar 

  10. Chen, X., Lu, Z., Pong, T.K.: Penalty methods for a class of non-Lipschitz optimization problems. SIAM J. Optim. 26, 1465–1492 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Chen, X., Niu, L., Yuan, Y.: Optimality conditions and a smoothing trust region newton method for non-Lipschitz optimization. SIAM J. Optim. 23, 1528–1552 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Chen, X., Xiang, S.: Sparse solutions of linear complementarity problems. Math. Program. 159, 539–556 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Chen, X., Xu, F., Ye, Y.: Lower bound theory of nonzero entries in solutions of \(l_2\)-\(l_p\) minimization. SIAM J. Sci. Comput. 32, 2832–2852 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63, 1–38 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17, 259–286 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Foucart, S., Lai, M.: Sparsest solutions of underdetermined linear systems via \(\ell _q\) minimization for \(0 < q \le 1\). Appl. Comput. Harmon. Anal. 26, 395–407 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Fukushima, M., Tseng, P.: An implementable active-set algorithm for computing a B-stationary point of the mathematical program with linear complementarity constraints. SIAM J. Optim. 12, 724–739 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Guo, L., Lin, G.H.: Notes on some constraint qualifications for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 156, 600–616 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Guo, L., Lin, G.H., Ye, J.J.: Stability analysis for parametric mathematical programs with geometric constraints and its applications. SIAM J. Optim. 22, 1151–1176 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Guo, L., Lin, G.H., Ye, J.J., Zhang, J.: Sensitivity analysis for parametric mathematical programs with equilibrium constraints. SIAM J. Optim. 24, 1206–1237 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137, 257–288 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Hu, X., Ralph, D.: Convergence of a penalty method for mathematical programming with equilibrium constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

    MathSciNet  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: An active-set Newton method for mathematical programs with complementarity constraints. SIAM J. Optim. 19, 1003–1027 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Optim. 22, 1579–1606 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Kanzow, C., Schwartz, A.: Mathematical programs with equilibrium constraints: enhanced Fritz John conditions, new constraint qualifications and improved exact penalty results. SIAM J. Optim. 20, 2730–2753 (2010)

    MathSciNet  MATH  Google Scholar 

  27. KNITRO. https://www.artelys.com/en/optimization-tools/knitro (2016)

  28. Liu, Y., Ma, S., Dai, Y.-H., Zhang, S.: A smoothing SQP framework for a class of composite \(\ell _q\) minimization over polyhedron. Math. Program. 158, 467–500 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Liu, Y.L., Pan, S.H., Bi, S.J.: Equivalent Lipschitz surrogates for zero-norm and rank optimization problems. J. Global Optim. 72, 679–704 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Liu, X., Sun, J.: Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints. Math. Program. 101, 231–261 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Lu, Z.: Iterative reweighted minimization methods for \(\ell _p\) regularized unconstrained nonlinear programming. Math. Program. 147, 277–307 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  33. McCormick, G.P.: Second order conditions for constrained minima. SIAM J. Appl. Math. 15, 641–652 (1967)

    MathSciNet  MATH  Google Scholar 

  34. Nguyen, S., Dupuis, C.: An efficient method for computing traffic equilibria in networks with asymmetric transportation costs. Transp. Sci. 18, 185–202 (1984)

    Google Scholar 

  35. Outrata, J.V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24, 627–644 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    MATH  Google Scholar 

  37. Scheel, H.S., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Wright, S.J., Robert, D.N., Figueiredo, M.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Proces. 57, 2479–2493 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Yang, H., Huang, H.: Mathematical and Economic Theory of Road Pricing. Elsevier, Amsterdam (2005)

    Google Scholar 

  42. Yin, Y.F., Madanat, S.M., Lu, X.Y.: Robust improvement schemes for road networks under demand uncertainty. Eur. J. Oper. Res. 198, 470–479 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Ye, J.J.: Optimality conditions for optimization problems with complementarity constraints. SIAM J. Optim. 9, 374–387 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307, 350–369 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7, 481–507 (1997)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, C., Chen, X., Sumalee, A.: Robust Wardrop’s user equilibrium assignment under stochastic demand and supply: expected residual minimization approach. Transp. Res. B Methodol. 45, 534–552 (2011)

    Google Scholar 

  47. Zhao, Y., Li, D.: Reweighted \(\ell _1\)-minimization for sparse solutions to underdetermined linear systems. SIAM J. Optim. 22, 1065–1088 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the associate editor and two referees for their helpful comments and Dr. Yafeng Liu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lei Guo: This author’s work was supported by the NSFC Grant (Nos. 11771287, 71632007 and 11401379) and the Fundamental Research Funds for the Central Universities. Xiaojun Chen: The author’s work was supported in part by Hong Kong Research Grants Council PolyU153000/17P.

A An iteratively reweighted \(\ell _1\) minimization method for solving problem \((P_{\epsilon ,\sigma })\)

A An iteratively reweighted \(\ell _1\) minimization method for solving problem \((P_{\epsilon ,\sigma })\)

Algorithm A.1

Choose an arbitrary initial point \(y^0\in \mathbb {R}^n\) and set \(\imath =0\).

  1. Step 1:

    Solve the weighted \(\ell _1\) minimization problem

    $$\begin{aligned} \begin{array}{rl} \min &{} \quad f(y)+ p\sum \limits _{i=1}^r w_i^\imath |D_i^Ty|\\ {\mathrm{s.t.}} &{}\quad G(y)\ge 0,\ H(y)\ge 0, \ G(y)^TH(y)\le \sigma \end{array} \end{aligned}$$
    (A.1)

    to get \(y^{\imath +1}\), where \(w_i^{\imath }=(|D_i^Ty^{\imath }|+\epsilon _i)^{p-1}\) for all \(i=1,\ldots ,r\).

  2. Step 2:

    Set \(\imath =\imath +1\) and go to Step 1.

The proof of the following theorem uses the techniques in [31] for iteratively reweighted \(\ell _1\) methods for unconstrained minimization problems. For completeness, we give a brief proof.

Theorem A.1

Any accumulation point \(y^*\) of the sequence \(\{y^\imath \}\) generated by Algorithm A.1 is a stationary point of problem \((P_{\epsilon ,\sigma })\).

Proof

Let q be such that \( 1/p + 1/q=1 \), and let

$$\begin{aligned} \Upsilon _{\epsilon }(y,w):= f(y)+ p \sum _{i=1}^r \left[ w_i(|D_i^Ty|+\epsilon _i)-\frac{w_i^q}{q}\right] . \end{aligned}$$

It is easy to verify that for any \(y\in \mathbb {R}^n\) and \(\epsilon >0\),

$$\begin{aligned} F_{\epsilon }(y)=\min _{w\ge 0} \Upsilon _{\epsilon }(y,w), \end{aligned}$$
(A.2)

and for any \(\imath \ge 0\),

$$\begin{aligned} w^{\imath } = \mathrm{Arg}\min \limits _{w\ge 0} \Upsilon _{\epsilon }(y^{\imath },w),\ \quad y^{\imath +1} \in \mathrm{Arg}\min \limits _{y\in \mathcal{F}_\sigma } \Upsilon _{\epsilon }(y, w^\imath ). \end{aligned}$$
(A.3)

It then follows that

$$\begin{aligned} F_{\epsilon }(y^{\imath +1}) = \Upsilon _{\epsilon }(y^{\imath +1},w^{\imath +1}) \le \Upsilon _{\epsilon }(y^{\imath +1},w^{\imath })\le \Upsilon _{\epsilon }(y^{\imath },w^{\imath })=F_{\epsilon }(y^{\imath }). \end{aligned}$$
(A.4)

Hence, the sequence of \(\{F_{\epsilon }(y^{\imath })\}_{\imath \ge 0}\) is nonincreasing. Let \(y^{\imath }\rightarrow y^*\) as \(\imath \in K\rightarrow \infty \). This together with the continuity of \(F_{\epsilon }\) and the monotonicity of \(\{F_{\epsilon }(y^{\imath })\}_{\imath \ge 0}\) implies that \(F_{\epsilon }(y^{\imath })\rightarrow F_{\epsilon }(y^*)\) as \(\imath \rightarrow \infty \). Moreover, it is easy to see that \(w^\imath \rightarrow (|D_i^Ty^*|+\epsilon _i)^{p-1}\) as \(\imath \in K \rightarrow \infty \) for all \(i=1,\ldots ,r\). Then by (A.4), we have that \(\Upsilon _{\epsilon }(y^{\imath +1},w^{\imath })\rightarrow F_{\epsilon }(y^*)=\Upsilon _{\epsilon }(y^*,w^*)\). It follows from the second relation in (A.3) that \(\Upsilon _{\epsilon }(y^{\imath +1}, w^\imath )\le \Upsilon _{\epsilon }(y, w^\imath )\) for all \(y\in \mathcal{F}_\sigma \). Upon taking limits on both sides of this inequality as \(\imath \in K\rightarrow \infty \), we have that \(\Upsilon _{\epsilon }(y^*, w^*)\le \Upsilon _{\epsilon }(y, w^*)\) for all \(y\in \mathcal{F}_\sigma \). This means that \(y^*\in \mathrm{Arg}\min \nolimits _{y\in \mathcal{F}_\sigma } \Upsilon _{\epsilon }(y, w^*)\). By Fermat’s rule (see, e.g., [36, Theorem 10.1]), it follows that

$$\begin{aligned} 0\in \nabla f(y^*) + p\sum _{i=1}^r D_i(|D_i^Ty^*|+\epsilon _i)^{p-1} {\mathrm{sign}}\,(D_i^Ty^*) + \mathcal{N}_{\mathcal{F}_\sigma }(y^*), \end{aligned}$$

which is the stationary condition of problem \((P_{\epsilon ,\sigma })\) at \(y^*\). The proof is complete. \(\square \)

Although any accumulation point of the sequence generated by Algorithm A.1 is a stationary point of problem \((P_{\epsilon ,\sigma })\), all iteration points may not be approximate stationary points since \(\Vert y^\imath -y^{\imath +1}\Vert \) may not converge to 0 as \(\imath \rightarrow \infty \). However, a weak approximate stationary point can be obtained as follows.

Theorem A.2

Assume that the sequence \(\{y^\imath \}\) generated by Algorithm A.1 has a bounded subsequence. Then for any \(\varepsilon >0\), there exist \(\tilde{y}^\imath \) and \(\zeta \) satisfying \(\Vert y^\imath -\tilde{y}^\imath \Vert \le \varepsilon \) and \(\Vert \zeta \Vert \le \varepsilon \) such that

$$\begin{aligned} \zeta \in \nabla f(\tilde{y}^\imath ) + p\sum _{i=1}^r D_i(|D_i^T\tilde{y}^\imath |+\epsilon _i)^{p-1} {\mathrm{sign}}\,(D_i^T\tilde{y}^\imath ) + \mathcal{N}_{\mathcal{F}_\sigma }(\tilde{y}^\imath ). \end{aligned}$$

Proof

Without loss of generality, we assume that the whole sequence \(\{y^\imath \}\) is bounded. Let \(\varepsilon _0>0\). Since the sequence \(\{F_{\epsilon }(y^{\imath })\}_{\imath \ge 0}\) is convergent, it follows that \(\Vert F_{\epsilon }(y^{\imath })-F_{\epsilon }(y^{\imath +1})\Vert \le \varepsilon _0\) when \(\imath \) is sufficiently large. Then by (A.4), we have

$$\begin{aligned} 0\le \Upsilon _{\epsilon }(y^{\imath },w^{\imath })- \Upsilon _{\epsilon }(y^{\imath +1},w^{\imath }) \le \varepsilon _0. \end{aligned}$$

This means that \(y^\imath \) is an \(\varepsilon _0\)-optimal solution to the problem of minimizing \(\Upsilon _{\epsilon }(y,w^{\imath })\) on \(\mathcal{F}_\sigma \). Then by Ekeland’s variational principal, there exists \(\tilde{y}^{\imath }\) such that \(\Vert \tilde{y}^\imath -y^\imath \Vert \le \sqrt{\varepsilon _0}\), \(\Upsilon _{\epsilon }(\tilde{y}^{\imath },w^{\imath })\le \Upsilon _{\epsilon }(y^{\imath },w^{\imath })\), and \(\tilde{y}^\imath \) is the unique minimizer of the problem

$$\begin{aligned} \min \ \Upsilon _{\epsilon }(y,w^{\imath }) + \sqrt{\varepsilon _0} \Vert y-\tilde{y}^l\Vert \quad \mathrm{s.t.} \ y\in \mathcal{F}_\sigma . \end{aligned}$$

Then by Fermat’s rule (see, e.g., [36, Theorem 10.1]), we have that

$$\begin{aligned} 0\in \nabla f(\tilde{y}^\imath ) + p\sum _{i=1}^r w^\imath _i D_i {\mathrm{sign}}\,(D_i^T\tilde{y}^\imath ) + \sqrt{\varepsilon _0}\mathbb {B} + \mathcal{N}_{\mathcal{F}_\sigma }(\tilde{y}^\imath ), \end{aligned}$$

where \(\mathbb {B}\) stands for the closed unit ball of \(\mathbb {R}^n\). This and the definition of \(w^\imath \) imply that

$$\begin{aligned}&0\in \nabla f(\tilde{y}^\imath ) + p\sum _{i=1}^r D_i (|D_i^T\tilde{y}^\imath | + \epsilon _i)^{p-1} {\mathrm{sign}}\,(D_i^T\tilde{y}^\imath ) + \mathcal{N}_{\mathcal{F}_\sigma }(\tilde{y}^\imath )+ \sqrt{\varepsilon _0}\mathbb {B}\nonumber \\&\quad + p\sum _{i=1}^r D_i [(|D_i^Ty^\imath | + \epsilon _i)^{p-1}-(|D_i^T\tilde{y}^\imath | + \epsilon _i)^{p-1}]{\mathrm{sign}}\,(D_i^T\tilde{y}^\imath ). \end{aligned}$$
(A.5)

Since \(\{y^{\imath }\}\) is bounded, we can find an \(\varepsilon _0\) such that when \(\Vert \tilde{y}^\imath -y^\imath \Vert \le \sqrt{\varepsilon _0} \le \varepsilon /2 \), the norm of the term in (A.5) is bounded above by \(\varepsilon /2\). Then the desired result follows immediately. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Chen, X. Mathematical programs with complementarity constraints and a non-Lipschitz objective: optimality and approximation. Math. Program. 185, 455–485 (2021). https://doi.org/10.1007/s10107-019-01435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-019-01435-7

Keywords

Mathematics Subject Classification

Navigation